Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeted cancer therapies based on the inhibition of DNA strand break repair

Abstract

Both DNA double- and single-strand break repair are highly coordinated processes utilizing signal transduction cascades and post-translational modifications such as phosphorylation, acetylation and ADP ribosylation. ‘Drugable’ targets within these networks have been identified that could potentially lead to novel therapeutic approaches within the oncology arena. Key regulators within these signalling cascades, such as DNA-dependent protein kinase, ataxia-telangiectasia mutated, checkpoint kinase 1 (CHK1), checkpoint kinase 2 (CHK2) and poly(ADP-ribose) polymerase, use either ATP or nicotinamide adenine dinucleotide for their enzymatic functions and are therefore readily accessible to small molecule inhibition at their catalytic sites. A range of highly potent and selective inhibitors of these DNA damage response pathways has now been identified through drug discovery efforts, with candidate molecules either approaching or already in clinical trials. This review will describe the small molecule inhibitors and drug discovery activities that focus on DNA break repair, along with the therapeutic rationale behind chemosensitization and the concept of synthetic lethality. We will also describe the emerging clinical data coming from this exciting new approach to targeted cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abraham RT . (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15: 2177–2196.

    Article  CAS  PubMed  Google Scholar 

  • Abraham RT . (2004). PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3: 883–887.

    CAS  Google Scholar 

  • Albertella MR, Green CM, Lehmann AR, O'Connor MJ . (2005a). A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res 65: 9799–9806.

    CAS  PubMed  Google Scholar 

  • Albertella MR, Lau A, O'Connor MJ . (2005b). The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst) 4: 583–593.

    CAS  Google Scholar 

  • Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J et al. (2005). Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 48: 1873–1885.

    CAS  PubMed  Google Scholar 

  • Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J et al. (2005). Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 106: 3175–3182.

    CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebaek NE, Sehested M, Lukas J et al. (2005a). ATM activation in normal human tissues and testicular cancer. Cell Cycle 4: 838–845.

    CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K et al. (2005b). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    CAS  PubMed  Google Scholar 

  • Bonicalzi ME, Haince JF, Droit A, Poirier GG . (2005). Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when? Cell Mol Life Sci 62: 739–750.

    CAS  PubMed  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917.

    CAS  PubMed  Google Scholar 

  • Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S et al. (2004). Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96: 56–67.

    CAS  PubMed  Google Scholar 

  • Carlessi L, Buscemi G, Larson G, Hong Z, Wu JZ, Delia D . (2007). Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther 6: 935–944.

    CAS  PubMed  Google Scholar 

  • Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B . (2004). PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 58: 410–419.

    CAS  PubMed  Google Scholar 

  • Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC . (2002). Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J 21: 2827–2832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin NJ . (2005). PARP inhibitors for cancer therapy. Expert Rev Mol Med 7: 1–20.

    PubMed  Google Scholar 

  • D'Amours D, Desnoyers S, D'Silva I, Poirier GG . (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342: 249–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M et al. (1997). Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303–7307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Soto JA, Wang X, Tominaga Y, Wang RH, Cao L, Qiao W et al. (2006). The inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1) inhibitors. Int J Biol Sci 2: 179–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durkacz BW, Omidiji O, Gray DA, Shall S . (1980). (ADP-ribose)n participates in DNA excision repair. Nature 283: 593–596.

    CAS  PubMed  Google Scholar 

  • Evans AR, Limp-Foster M, Kelley MR . (2000). Going APE over ref-1. Mutat Res 461: 83–108.

    CAS  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921.

    CAS  PubMed  Google Scholar 

  • Fedier A, Fink D . (2004). Mutations in DNA mismatch repair genes: implications for DNA damage signaling and drug sensitivity (review). Int J Oncol 24: 1039–1047.

    CAS  PubMed  Google Scholar 

  • Fong PC, Spicer J, Reade S, Reid A, Vidal L, Schellens JH et al. (2006). Phase I pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of poly ADP-ribose polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumours. J Clin Oncol ASCO Annual Meeting Proceedings Part I 24: A3022.

    Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    CAS  PubMed  Google Scholar 

  • Hardcastle IR, Cockcroft X, Curtin NJ, El-Murr MD, Leahy JJ, Stockley M et al. (2005). Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. J Med Chem 48: 7829–7846.

    CAS  PubMed  Google Scholar 

  • Hartman IV JL, Garvik B, Hartwell L . (2001). Principles for the buffering of genetic variation. Science 291: 1001–1004.

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Weinert TA . (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634.

    CAS  PubMed  Google Scholar 

  • Hay T, Jenkins H, Sansom OJ, Martin NM, Smith GC, Clarke AR . (2005). Efficient deletion of normal Brca2-deficient intestinal epithelium by poly(ADP-ribose) polymerase inhibition models potential prophylactic therapy. Cancer Res 65: 10145–10148.

    CAS  PubMed  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    CAS  PubMed  Google Scholar 

  • Hoeijmakers JH . (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    CAS  PubMed  Google Scholar 

  • Hollick JJ, Rigoreau LJ, Cano-Soumillac C, Cockcroft X, Curtin NJ, Frigerio M et al. (2007). Pyranone, thiopyranone, and pyridone inhibitors of phosphatidylinositol 3-kinase related kinases. Structure–activity relationships for DNA-dependent protein kinase inhibition, and identification of the first potent and selective inhibitor of the ataxia telangiectasia mutated kinase. J Med Chem 50: 1958–1972.

    CAS  PubMed  Google Scholar 

  • Hu HY, Horton JK, Gryk MR, Prasad R, Naron JM, Sun DA et al. (2004). Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. J Biol Chem 279: 39736–39744.

    CAS  PubMed  Google Scholar 

  • Ismail IH, Martensson S, Moshinsky D, Rice A, Tang C, Howlett A et al. (2004). SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 23: 873–882.

    CAS  PubMed  Google Scholar 

  • Izzard RA, Jackson SP, Smith GC . (1999). Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res 59: 2581–2586.

    CAS  PubMed  Google Scholar 

  • Jackson SP . (2001). Detecting, signalling and repairing DNA double-strand breaks. Biochem Soc Trans 29: 655–661.

    CAS  PubMed  Google Scholar 

  • Janetka JW, Ashwell S, Zabludoff S, Lyne P . (2007). Inhibitors of checkpoint kinases: from discovery to the clinic. Curr Opin Drug Discov Devel 10: 473–486.

    CAS  PubMed  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    CAS  PubMed  Google Scholar 

  • Jeggo PA . (1998). Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 150: S80–S91.

    CAS  PubMed  Google Scholar 

  • Kaelin Jr WG . (2005). The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5: 689–698.

    CAS  PubMed  Google Scholar 

  • Karimi-Busheri F, Rasouli-Nia A, Allalunis-Turner J, Weinfeld M . (2007). Human polynucleotide kinase participates in repair of DNA double-strand breaks by nonhomologous end joining but not homologous recombination. Cancer Res 67: 6619–6625.

    CAS  PubMed  Google Scholar 

  • Kawabe T . (2004). G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3: 513–519.

    CAS  PubMed  Google Scholar 

  • Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA et al. (2007). Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 117: 1440–1449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy RD, D'Andrea AD . (2006). DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24: 3799–3808.

    CAS  PubMed  Google Scholar 

  • Koberle B, Masters JR, Hartley JA, Wood RD . (1999). Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr Biol 9: 273–276.

    CAS  PubMed  Google Scholar 

  • Krokan EH, Slupphaug G (eds). (2007). Repair of small base lesions in DNA – from molecular biology to phenotype. DNA Repair 6: 397–560.

    CAS  Google Scholar 

  • Kurz EU, Lees-Miller SP . (2004). DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 3: 889–900.

    CAS  Google Scholar 

  • Lau A, Swinbank KM, Ahmed PS, Taylor DL, Jackson SP, Smith GC et al. (2005). Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat Cell Biol 7: 493–500.

    PubMed  Google Scholar 

  • Lavin MF, Kozlov S . (2007). ATM activation and DNA damage response. Cell Cycle 6: 931–942.

    CAS  PubMed  Google Scholar 

  • Lindahl T . (1993). Instability and decay of the primary structure of DNA. Nature 362: 709–715.

    CAS  PubMed  Google Scholar 

  • Liu L, Gerson ST . (2004). Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr Opin Investig Drugs 5: 623–627.

    CAS  PubMed  Google Scholar 

  • Lucchesi JC . (1968). Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster. Genetics 59: 37–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch HT, de la Chapelle A . (1999). Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36: 801–818.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S et al. (2005). Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res 33: 4711–4724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni Jr JF, Nelson CE, Kim DH et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238.

    CAS  PubMed  Google Scholar 

  • Masutani M, Nozaki T, Nakamoto K, Nakagama H, Suzuki H, Kusuoka O et al. (2000). The response of Parp knockout mice against DNA damaging agents. Mutat Res 462: 159–166.

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    CAS  PubMed  Google Scholar 

  • McCabe N, Lord CJ, Tutt AN, Martin NM, Smith GC, Ashworth A . (2005). BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of poly (ADP-ribose) polymerase: an issue of potency. Cancer Biol Ther 4: 934–936.

    CAS  PubMed  Google Scholar 

  • McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al. (2006). Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66: 8109–8115.

    CAS  PubMed  Google Scholar 

  • Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W et al. (2003). Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2: 371–382.

    CAS  PubMed  Google Scholar 

  • Muller C, Christodoulopoulos G, Salles B, Panasci L . (1998). DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivity of chronic lymphocytic leukemia lymphocytes to nitrogen mustards. Blood 92: 2213–2219.

    CAS  PubMed  Google Scholar 

  • Nghiem P, Park PK, Kim Y, Vaziri C, Schreiber SL . (2001). ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci USA 98: 9092–9097.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer R . (2005). First in human phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients (pts) with advanced solid tumors. J Clin Oncol ASCO Annual Meeting Proceedings 23: A3065.

    Google Scholar 

  • Plummer R . (2006). First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J Clin Oncol ASCO Annual Meeting Proceedings Part I 24: A8013.

    Google Scholar 

  • Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D et al. (1995). Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55: 1643–1648.

    CAS  PubMed  Google Scholar 

  • Ratnam K, Low JA . (2007). Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 13: 1383–1388.

    CAS  PubMed  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT . (1998). Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M et al. (2000). High-performance affinity beads for identifying drug receptors. Nat Biotechnol 18: 877–881.

    CAS  PubMed  Google Scholar 

  • Shinohara ET, Geng L, Tan J, Chen H, Shir Y et al. (2005). DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65: 4987–4992.

    CAS  PubMed  Google Scholar 

  • Shiobara M, Miyazaki M, Ito H, Togawa A, Nakajima N, Nomura F et al. (2001). Enhanced polyadenosine diphosphate-ribosylation in cirrhotic liver and carcinoma tissues in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 16: 338–344.

    CAS  PubMed  Google Scholar 

  • Smith GC, Jackson SP . (1999). The DNA-dependent protein kinase. Genes Dev 13: 916–934.

    CAS  PubMed  Google Scholar 

  • Smith GCM, Jackson SP . (2003) In: Bradshaw RA, Dennis EA (eds). Handbook of Cell Signalling vol. 1 Elsevier Science: USA, pp 557–561.

    Google Scholar 

  • Southan GJ, Szabo C . (2003). Poly(ADP-ribose) polymerase inhibitors. Curr Med Chem 10: 321–340.

    CAS  PubMed  Google Scholar 

  • Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH . (1990). Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348: 747–749.

    CAS  PubMed  Google Scholar 

  • Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P et al. (2006). ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25: 5775–5782.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoda T, Kurashige T, Moriki T, Yamamoto H, Fujimoto S, Taniguchi T . (1991). Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am J Hematol 37: 223–227.

    CAS  PubMed  Google Scholar 

  • Virag L, Szabo C . (2002). The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54: 375–429.

    CAS  PubMed  Google Scholar 

  • Won J, Kim M, Kim N, Ahn JH, Lee WG, Kim SS et al. (2006). Small molecule-based reversible reprogramming of cellular lifespan. Nat Chem Biol 2: 369–374.

    CAS  PubMed  Google Scholar 

  • Yang S, Irani K, Heffron SE, Jurnak F, Meyskens Jr FL . (2005). Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol Cancer Ther 4: 1923–1935.

    CAS  PubMed  Google Scholar 

  • Yap TA . (2007). First in human phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of KU-0059436 (Ku), a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in cancer patients (p), including BRCA1/2 mutation carriers. J Clin Oncol ASCO Annual Meeting Proceedings Part I 25: A3529.

    Google Scholar 

  • Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ et al. (2006). Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66: 5354–5362.

    CAS  PubMed  Google Scholar 

  • Zou L, Elledge SJ . (2003). Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300: 1542–1548.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C M Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, M., Martin, N. & Smith, G. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 26, 7816–7824 (2007). https://doi.org/10.1038/sj.onc.1210879

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210879

Keywords

This article is cited by

Search

Quick links