Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of c-met expression by transcription repressor Daxx

Abstract

The protooncogene c-met encodes the tyrosine kinase receptor for the hepatocyte growth factor/scatter factor (HGF/SF). While overexpression of c-met is documented in many types of tumors, the mechanism of c-met regulation remains elusive. Here, we demonstrate Daxx as a repressor of c-met transcription. The expression of c-met is elevated in Daxx knockout mouse cells and is reversed by Daxx reconstitution. C-met promoter analysis of Daxx−/− cells reveled changes in chromatin acetylation, but not in DNA methylation. Daxx binds to the mouse c-met promoter and Daxx-binding region is sufficient for transcription repression, while HDAC2 is associated with c-met promoter mostly in Daxx+/+ cells, pointing to Daxx-dependent HDAC2 recruitment as a potential mechanism of c-met repression. HGF-induced cell mobility and invasion confirmed augmented activity of c-Met/HGF pathway in Daxx−/− cells. Finally, inverse correlation between Daxx and c-Met in cancer cell lines and in metastatic breast cancer specimens suggests potential function of Daxx as a c-met repressor during cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Baylin SB, Ohm JE . (2006). Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6: 107–116.

    Article  CAS  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925.

    Article  CAS  Google Scholar 

  • Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST . (2002). Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res 62: 5126–5128.

    CAS  Google Scholar 

  • Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL . (1996). Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93: 4213–4218.

    Article  CAS  Google Scholar 

  • Gambarotta G, Boccaccio C, Giordano S, Ando M, Stella MC, Comoglio PM . (1996). Ets up-regulates MET transcription. Oncogene 13: 1911–1917.

    CAS  PubMed  Google Scholar 

  • Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H et al. (2000). Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24: 368–371.

    Article  CAS  Google Scholar 

  • Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G . (2002). Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115: 3319–3330.

    CAS  PubMed  Google Scholar 

  • Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G . (1999). The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 18: 3702–3711.

    Article  CAS  Google Scholar 

  • Ishov AM, Vladimirova OV, Maul GG . (2004). Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117: 3807–3820.

    Article  CAS  Google Scholar 

  • Kim EJ, Park JS, Um SJ . (2003). Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Nucleic Acids Res 31: 5356–5367.

    Article  CAS  Google Scholar 

  • Leroy C, Deheuninck J, Reveneau S, Foveau B, Ji Z, Villenet C et al. (2006). HGF/SF regulates expression of apoptotic genes in MCF-10A human mammary epithelial cells. Ann NY Acad Sci 1090: 188–202.

    Article  CAS  Google Scholar 

  • Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ et al. (2000a). Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20: 1784–1796.

    Article  CAS  Google Scholar 

  • Li R, Pei H, Watson DK, Papas TS . (2000b). EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 19: 745–753.

    Article  CAS  Google Scholar 

  • Lindsay CR, Scholz A, Morozov VM, Ishov AM . (2007). Daxx shortens mitotic arrest caused by paclitaxel. Cell Cycle 6: 1200–1204.

    Article  CAS  Google Scholar 

  • Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R . (2002). Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13: 41–59.

    Article  CAS  Google Scholar 

  • Michaelson JS, Bader D, Kuo F, Kozak C, Leder P . (1999). Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13: 1918–1923.

    Article  CAS  Google Scholar 

  • Michaelson JS, Leder P . (2003). RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci 116: 345–352.

    Article  CAS  Google Scholar 

  • Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C . (2002). K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21: 4885–4893.

    Article  CAS  Google Scholar 

  • Muromoto R, Sugiyama K, Takachi A, Imoto S, Sato N, Yamamoto T et al. (2004). Physical and functional interactions between Daxx and DNA methyltransferase 1-associated protein, DMAP1. J Immunol 172: 2985–2993.

    Article  CAS  Google Scholar 

  • Ohiro Y, Usheva A, Kobayashi S, Duffy SL, Nantz R, Gius D et al. (2003). Inhibition of stress-inducible kinase pathways by tumorigenic mutant p53. Mol Cell Biol 23: 322–334.

    Article  CAS  Google Scholar 

  • Olek A, Oswald J, Walter J . (1996). A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 24: 5064–5066.

    Article  CAS  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM . (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3: 347–361.

    Article  Google Scholar 

  • Radaeva S, Jaruga B, Hong F, Kim WH, Fan S, Cai H et al. (2002). Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes. Gastroenterology 122: 1020–1034.

    Article  CAS  Google Scholar 

  • Rong S, Segal S, Anver M, Resau JH, Vande Woude GF . (1994). Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA 91: 4731–4735.

    Article  CAS  Google Scholar 

  • Salomoni P, Khelifi AF . (2006). Daxx: death or survival protein? Trends Cell Biol 16: 97–104.

    Article  CAS  Google Scholar 

  • Seol DW, Chen Q, Smith ML, Zarnegar R . (1999). Regulation of the c-met proto-oncogene promoter by p53. J Biol Chem 274: 3565–3572.

    Article  CAS  Google Scholar 

  • Seol DW, Chen Q, Zarnegar R . (2000). Transcriptional activation of the hepatocyte growth factor receptor (c-met) gene by its ligand (hepatocyte growth factor) is mediated through AP-1. Oncogene 19: 1132–1137.

    Article  CAS  Google Scholar 

  • Seol DW, Zarnegar R . (1998). Structural and functional characterization of the mouse c-met proto-oncogene (hepatocyte growth factor receptor) promoter. Biochim Biophys Acta 1395: 252–258.

    Article  CAS  Google Scholar 

  • Shimoda K, Kamesaki K, Numata A, Aoki K, Matsuda T, Oritani K et al. (2002). Cutting edge: tyk2 is required for the induction and nuclear translocation of Daxx which regulates IFN-alpha-induced suppression of B lymphocyte formation. J Immunol 169: 4707–4711.

    Article  CAS  Google Scholar 

  • Takayama H, LaRochelle WJ, Sharp R, Otsuka T, Kriebel P, Anver M et al. (1997). Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 94: 701–706.

    Article  CAS  Google Scholar 

  • Tang J, Wu S, Liu H, Stratt R, Barak OG, Shiekhattar R et al. (2004). A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem 279: 20369–20377.

    Article  CAS  Google Scholar 

  • Tzeng SL, Cheng YW, Li CH, Lin YS, Hsu HC, Kang JJ . (2006). Physiological and functional interactions between Tcf4 and Daxx in colon cancer cells. J Biol Chem 281: 15405–15411.

    Article  CAS  Google Scholar 

  • Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S et al. (2003). The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci USA 100: 10635–10640.

    Article  CAS  Google Scholar 

  • Zhang X, Liu Y . (2003). Suppression of HGF receptor gene expression by oxidative stress is mediated through the interplay between Sp1 and Egr-1. Am J Physiol Renal Physiol 284: F1216–F1225.

    Article  CAS  Google Scholar 

  • Zhang X, Yang J, Li Y, Liu Y . (2005). Both Sp1 and Smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 288: F16–F26.

    Article  CAS  Google Scholar 

  • Zhao LY, Colosimo AL, Liu Y, Wan Y, Liao D . (2003). Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J Virol 77: 11809–11821.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Dr Martha Campbell-Thompson and Tracy Clarke, Molecular Pathology Core, Department of Pathology, Immunology and Laboratory Medicine, UF for help in ICH. This work was supported by FAMRI Clinical Innovation Award 32088, Florida James & Esther King Biomedical Research Program 05NIR-07 and ACS-IRG-01-188-01 for VMM and AMI and by NIH AI 41136 for OVV and GGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Ishov.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, V., Massoll, N., Vladimirova, O. et al. Regulation of c-met expression by transcription repressor Daxx. Oncogene 27, 2177–2186 (2008). https://doi.org/10.1038/sj.onc.1210865

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210865

Keywords

This article is cited by

Search

Quick links