Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Essential role of Pyk2 and Src kinase activation in neuropeptide-induced proliferation of small cell lung cancer cells

Abstract

Neuropeptide hormones like bombesin/gastrin-releasing peptide, galanin or bradykinin, acting via auto and paracrine growth loops, represent the principal mitogens of small cell lung cancer (SCLC). These mitogenic neuropeptides activate Gq/11-coupled receptors which stimulate phospholipase Cβ activity, followed by rises of the intracellular calcium concentration ([Ca2+]i) and activation of protein kinase C (PKC). We report here that proline-rich tyrosine kinase Pyk2 is highly expressed in SCLC cells and provides a functional link between neuropeptide-induced increases in [Ca2+]i and tumor cell proliferation. Activation of Pyk2 and its association with Src kinases critically depends on the elevation of [Ca2+]i, but is independent of PKC. Src kinase activities are crucial for neuropeptide-mediated GTP-loading of Ras and activation of extracellular signal-regulated kinases in SCLC cells. Pyk2 and Src kinases essentially contribute to anchorage-independent proliferation of SCLC cells. Inhibition of either Pyk2 or Src kinases by lentiviral RNAi or pharmacological inhibition with PP2, respectively, attenuated basal and neuropeptide-elicited survival and proliferation of SCLC cells in liquid culture and in soft agar. Thus, neuropeptides stimulate anchorage-independent survival and proliferation of SCLC cells via pathways involving Pyk2 and Src kinases. Therefore, Ca2+-induced Pyk2/Src complex formation may be a rewarding molecular target for novel therapeutic strategies in SCLC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

GEF:

guanine nucleotide exchange factor

Grb2:

growth factor receptor-bound protein 2

GRP:

bombesin/gastrin-releasing peptide

JNK/SAPK:

c-jun N-terminal kinase/stress-activated kinase

MAPK:

mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

N-SCLC:

Non-small cell lung cancer

PI3K:

phosphatidylinositol 3-kinase

PKC:

protein kinase C

PLC:

phospholipase C

RasGRF:

Ras guanine nucleotide-releasing factor

RasGRP:

Ras guanine nucleotide-releasing protein

RBD:

Ras-binding domain

SCLC:

small cell lung cancer

SH2 and SH3:

Src homology domain

References

  • Avraham H, Park SY, Schinkmann K, Avraham S . (2000). RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12: 123–133.

    Article  CAS  Google Scholar 

  • Beekman A, Helfrich B, Bunn Jr PA, Heasley LE . (1998). Expression of catalytically inactive phospholipase Cβ disrupts phospholipase Cβ and mitogen-activated protein kinase signaling and inhibits small cell lung cancer growth. Cancer Res 58: 910–913.

    CAS  PubMed  Google Scholar 

  • Blaukat A, Ivankovic-Dikic I, Gronroos E, Dolfi F, Tokiwa G, Vuori K et al. (1999). Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 274: 14893–14901.

    Article  CAS  Google Scholar 

  • Cook SJ, Lockyer PJ . (2006). Recent advances in Ca2+-dependent Ras regulation and cell proliferation. Cell Calcium 39: 101–112.

    Article  CAS  Google Scholar 

  • Cullen PJ, Lockyer PJ . (2002). Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 3: 339–348.

    Article  CAS  Google Scholar 

  • de Rooij J, Bos JL . (1997). Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14: 623–625.

    Article  CAS  Google Scholar 

  • Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J . (1996). A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383: 547–550.

    Article  CAS  Google Scholar 

  • Fernandis AZ, Prasad A, Band H, Klosel R, Ganju RK . (2004). Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23: 157–167.

    Article  CAS  Google Scholar 

  • Grosse R, Roelle S, Herrlich A, Hohn J, Gudermann T . (2000). Epidermal growth factor receptor tyrosine kinase mediates Ras activation by gonadotropin-releasing hormone. J Biol Chem 275: 12251–12260.

    Article  CAS  Google Scholar 

  • Hatch WC, Ganju RK, Hiregowdara D, Avraham S, Groopman JE . (1998). The related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated and participates in colony-stimulating factor-1/macrophage colony-stimulating factor signaling in monocyte-macrophages. Blood 91: 3967–3973.

    CAS  PubMed  Google Scholar 

  • Heasley LE . (2001). Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene 20: 1563–1569.

    Article  CAS  Google Scholar 

  • Herrmann C, Martin GA, Wittinghofer A . (1995). Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270: 2901–2905.

    Article  CAS  Google Scholar 

  • Jones K, Hibbert F, Keenan M . (1999). Glowing jellyfish, luminescence and a molecule called coelenterazine. Trends Biotechnol 17: 477–481.

    Article  Google Scholar 

  • Laskin J, Sandler A, Johnson DH . (2003). An advance in small-cell lung cancer treatment-more or less. J Natl Cancer Inst 95: 1099–1101.

    Article  Google Scholar 

  • Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM et al. (1995). Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 376: 737–745.

    Article  CAS  Google Scholar 

  • Lipinski CA, Tran NL, Menashi E, Rohl C, Kloss J, Bay RC et al. (2005). The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia 7: 435–445.

    Article  CAS  Google Scholar 

  • Mabry M, Nakagawa T, Baylin S, Pettengill O, Sorenson G, Nelkin B . (1989). Insertion of the v-Ha-ras oncogene induces differentiation of calcitonin-producing human small cell lung cancer. J Clin Invest 84: 194–199.

    Article  CAS  Google Scholar 

  • MacKinnon AC, Armstrong RA, Waters CM, Cummings J, Smyth JF, Haslett C et al. (1999). [Arg6,D-Trp7,9,NmePhe8]-substance P (6–11) activates JNK and induces apoptosis in small cell lung cancer cells via an oxidant-dependent mechanism. Br J Cancer 80: 1026–1034.

    Article  CAS  Google Scholar 

  • McMullen M, Keller R, Sussman M, Pumiglia K . (2004). Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 23: 1275–1282.

    Article  CAS  Google Scholar 

  • Moore SM, Rintoul RC, Walker TR, Chilvers ER, Haslett C, Sethi T . (1998). The presence of a constitutively active phosphoinositide 3-kinase in small cell lung cancer cells mediates anchorage-independent proliferation via a protein kinase B and p70s6k-dependent pathway. Cancer Res 58: 5239–5247.

    CAS  PubMed  Google Scholar 

  • Parkin DM, Bray FI, Devesa SS . (2001). Cancer burden in the year 2000. The global picture. Eur J Cancer 37 (Suppl 8): S4–S66.

    Article  Google Scholar 

  • Ravi RK, Weber E, McMahon M, Williams JR, Baylin S, Mal A et al. (1998). Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest 101: 153–159.

    Article  CAS  Google Scholar 

  • Rintoul RC, Sethi T . (2001). The role of extracellular matrix in small-cell lung cancer. Lancet Oncol 2: 437–442.

    Article  CAS  Google Scholar 

  • Rocic P, Govindarajan G, Sabri A, Lucchesi PA . (2001). A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol Cell Physiol 280: C90–C99.

    Article  CAS  Google Scholar 

  • Rodriguez-Fernandez JL, Rozengurt E . (1996). Bombesin, bradykinin, vasopressin, and phorbol esters rapidly and transiently activate Src family tyrosine kinases in Swiss 3T3 cells. Dissociation from tyrosine phosphorylation of p125 focal adhesion kinase. J Biol Chem 271: 27895–27901.

    Article  CAS  Google Scholar 

  • Rozengurt E . (2002). Neuropeptides as growth factors for normal and cancerous cells. Trends Endocrinol Metab 13: 128–134.

    Article  CAS  Google Scholar 

  • Schlaepfer DD, Hauck CR, Sieg DJ . (1999). Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71: 435–478.

    Article  CAS  Google Scholar 

  • Sethi T, Herget T, Wu SV, Walsh JH, Rozengurt E . (1993). CCKA and CCKB receptors are expressed in small cell lung cancer lines and mediate Ca2+ mobilization and clonal growth. Cancer Res 53: 5208–5213.

    CAS  PubMed  Google Scholar 

  • Sethi T, Langdon S, Smyth J, Rozengurt E . (1992). Growth of small cell lung cancer cells: stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. Cancer Res 52: 2737s–2742s.

    CAS  PubMed  Google Scholar 

  • Sethi T, Rozengurt E . (1991). Galanin stimulates Ca2+ mobilization, inositol phosphate accumulation, and clonal growth in small cell lung cancer cells. Cancer Res 51: 1674–1679.

    CAS  PubMed  Google Scholar 

  • Seufferlein T, Rozengurt E . (1996a). Galanin, neurotensin, and phorbol esters rapidly stimulate activation of mitogen-activated protein kinase in small cell lung cancer cells. Cancer Res 56: 5758–5764.

    CAS  PubMed  Google Scholar 

  • Seufferlein T, Rozengurt E . (1996b). Galanin stimulates Ca2+ mobilization, inositol phosphate accumulation, and clonal growth in small cell lung cancer cells. Cancer Res 56: 3895–3897.

    CAS  PubMed  Google Scholar 

  • Sorokin A, Kozlowski P, Graves L, Philip A . (2001). Protein-tyrosine kinase Pyk2 mediates endothelin-induced p38 MAPK activation in glomerular mesangial cells. J Biol Chem 276: 21521–21528.

    Article  CAS  Google Scholar 

  • Teti A, Migliaccio S, Baron R . (2002). The role of the alphaVbeta3 integrin in the development of osteolytic bone metastases: a pharmacological target for alternative therapy? Calcif Tissue Int 71: 293–299.

    Article  CAS  Google Scholar 

  • Tokiwa G, Dikic I, Lev S, Schlessinger J . (1996). Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science 273: 792–794.

    Article  CAS  Google Scholar 

  • Wei L, Yang Y, Zhang X, Yu Q . (2004). Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene 23: 9052–9061.

    Article  CAS  Google Scholar 

  • Wittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T . (2000). The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to Gq, Gi and G12 proteins. Oncogene 19: 4199–4209.

    Article  CAS  Google Scholar 

  • Zrihan-Licht S, Fu Y, Settleman J, Schinkmann K, Shaw L, Keydar I et al. (2000). RAFTK/Pyk2 tyrosine kinase mediates the association of p190 RhoGAP with RasGAP and is involved in breast cancer cell invasion. Oncogene 19: 1318–1328.

    Article  CAS  Google Scholar 

  • Zwartkruis FJ, Bos JL . (1999). Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res 253: 157–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Gudermann.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelle, S., Grosse, R., Buech, T. et al. Essential role of Pyk2 and Src kinase activation in neuropeptide-induced proliferation of small cell lung cancer cells. Oncogene 27, 1737–1748 (2008). https://doi.org/10.1038/sj.onc.1210819

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210819

Keywords

This article is cited by

Search

Quick links