Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2α

Abstract

Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFα protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFα) and aha-1 (HIFβ), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2α-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2α, but not HIF-1α. These results identify TWIST1 as a direct target gene of HIF-2α, which may provide insight into the acquired metastatic capacity of hypoxic tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bardos JI, Ashcroft M . (2004). Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26: 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Bishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O’Rourke D et al. (2004). Genetic analysis of pathways regulated by the von Hippel–Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2: e289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM et al. (2003). Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97: 1573–1581.

    Article  PubMed  Google Scholar 

  • Corsi AK, Brodigan TM, Jorgensen EM, Krause M . (2002). Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre–Chotzen syndrome. Development 129: 2761–2772.

    CAS  PubMed  Google Scholar 

  • Dekanty A, Lavista-Llanos S, Irisarri M, Oldham S, Wappner P . (2005). The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-alpha/Sima. J Cell Sci 118: 5431–5441.

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y . (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94: 4273–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Erbel PJ, Card PB, Karakuzu O, Bruick RK, Gardner KH . (2003). Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor. Proc Natl Acad Sci USA 100: 15504–15509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66: 3567–3575.

    Article  CAS  PubMed  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gort EH, Groot AJ, Derks van de Ven TL, van der Groep P, Verlaan I, van Laar T et al. (2006). Hypoxia-inducible factor-1alpha expression requires PI 3-kinase activity and correlates with Akt1 phosphorylation in invasive breast carcinomas. Oncogene 25: 6123–6127.

    Article  CAS  PubMed  Google Scholar 

  • Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA et al. (2005). Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 206: 291–304.

    Article  CAS  PubMed  Google Scholar 

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA . (1998). Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7: 205–213.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Harfe BD, Vaz Gomes A, Kenyon C, Liu J, Krause M, Fire A . (1998). Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev 12: 2623–2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockel M, Vaupel P . (2001). Biological consequences of tumor hypoxia. Semin Oncol 28: 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H et al. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10: 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Nomura M . (1997). cDNA cloning and tissue-specific expression of a novel basic helix–loop–helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 233: 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Ip YT, Park RE, Kosman D, Bier E, Levine M . (1992). The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev 6: 1728–1739.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Guo R, Powell-Coffman JA . (2001). The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98: 7916–7921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamath RS, Ahringer J . (2003). Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30: 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Kim WY, Lechpammer M, Kaelin Jr WG . (2003). Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1: E83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A et al. (1998). Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124: 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Liao D, Corle C, Seagroves TN, Johnson RS . (2007). Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L et al. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13: 2207–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M et al. (2003). Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 278: 31277–31285.

    Article  CAS  PubMed  Google Scholar 

  • Padilla PA, Nystul TG, Zager RA, Johnson AC, Roth MB . (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. Mol Biol Cell 13: 1473–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh CW, Tan CC, Jones RW, Ratcliffe PJ . (1991). Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 88: 10553–10557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14: 34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salem Y, Shpungin S, Pasder O, Pomp O, Taler M, Malovani H et al. (2005). Fer kinase sustains the activation level of ERK1/2 and increases the production of VEGF in hypoxic cells. Cell Signal 17: 341–353.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL . (2001). HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL . (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19: 176–182.

    CAS  Google Scholar 

  • Shen C, Nettleton D, Jiang M, Kim SK, Powell-Coffman JA . (2005). Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J Biol Chem 280: 20580–20588.

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Powell-Coffman JA . (2003). Genetic analysis of hypoxia signaling and response in C. elegans. Ann NY Acad Sci 995: 191–199.

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Shao Z, Powell-Coffman JA . (2006). The Caenorhabditis elegans rhy-1 gene inhibits HIF-1 hypoxia-inducible factor activity in a negative feedback loop that does not include vhl-1. Genetics 174: 1205–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Akiyama N, Noda M, Sasai K, Hiraoka M . (1998). Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes. Int J Radiat Oncol Biol Phys 42: 913–916.

    Article  CAS  PubMed  Google Scholar 

  • Szymanski P, Levine M . (1995). Multiple modes of dorsal-bHLH transcriptional synergy in the Drosophila embryo. EMBO J 14: 2229–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, McKnight SL, Russell DW . (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72–82.

    Article  CAS  PubMed  Google Scholar 

  • To KK, Huang LE . (2005). Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem 280: 38102–38107.

    Article  CAS  PubMed  Google Scholar 

  • Trent C, Tsuing N, Horvitz HR . (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104: 619–647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Haaften G, Vastenhouw NL, Nollen EA, Plasterk RH, Tijsterman M . (2004). Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality. Proc Natl Acad Sci USA 101: 12992–12996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaupel P, Kelleher DK, Hockel M . (2001). Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28: 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Mayer A . (2005). Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Clin Biol 12: 5–10.

    Article  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL . (1995). Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92: 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Semenza GL . (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90: 4304–4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang V, Davis DA, Haque M, Huang LE, Yarchoan R . (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res 65: 3299–3306.

    Article  CAS  PubMed  Google Scholar 

  • Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C et al. (2003). Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17: 271–273.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AO, Morriss-Kay GM . (2001). Genetics of craniofacial development and malformation. Nat Rev Genet 2: 458–468.

    Article  CAS  PubMed  Google Scholar 

  • Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P et al. (2003). Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63: 5679–5684.

    CAS  PubMed  Google Scholar 

  • Wood SM, Gleadle JM, Pugh CW, Hankinson O, Ratcliffe PJ . (1996). The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 271: 15117–15123.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a program grant from the Dutch Cancer Foundation (KWF Kankerbestrijding, UU2003-2825) and an AEGON International Scholarship in Oncology. Additional financial support was obtained from the Maurits and Anna de Kock Foundation, the Jan Dekker and Dr Ludgardine Bouwman Foundation and the Nijbakker-Morra Foundation. We acknowledge the Caenorhabditis Genetics Center, the Ratcliffe lab and the Powell-Coffman lab for providing strains and information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Vooijs.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gort, E., van Haaften, G., Verlaan, I. et al. The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2α. Oncogene 27, 1501–1510 (2008). https://doi.org/10.1038/sj.onc.1210795

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210795

Keywords

This article is cited by

Search

Quick links