Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface

Abstract

MEN 2B (multiple endocrine neoplasia type 2B) is an autosomal dominant cancer syndrome caused by an oncogenic form of the receptor tyrosine kinase REarranged during transfection (RET). The MEN 2B syndrome is associated with an abnormal autophosphorylation of the mutated receptor even without ligand-stimulation. Here, we characterize the activation of a RETMEN 2B variant carrying the point mutation Met918Thr, and show that the 150 kDa precursor of RETMEN 2B becomes phosphorylated already during synthesis in the endoplasmic reticulum (ER). At least three different tyrosine residues (Tyr905, Tyr1062, Tyr1096) of the RETMEN 2B precursor are phosphorylated before the oncogenic receptor reaches the cell surface. We also demonstrate that the precursor of RETMEN 2B interacts with both growth factor receptor-bound protein and Src homology 2 domain-containing already in the ER, and that this interaction is dependent on the kinase activity of RET. With the aid of two RET mutants (RETMEN 2B/S32L and RETMEN 2B/F393L), which accumulate in the ER, we show that the oncogenic precursor of the receptor has the capacity to activate AKT, extracellular signal-regulated kinase and signal transducer and activator of transcription 3 from the ER. Taken together, our data demonstrate that the oncogenic precursor of RETMEN 2B is phosphorylated, interacts with adapter proteins and induces downstream signalling from the ER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Airaksinen MS, Saarma M . (2002). The GDNF family: Signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383–394.

    Article  CAS  Google Scholar 

  • Asai N, Iwashita T, Matsuyama M, Takahashi M . (1995). Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 15: 1613–1619.

    Article  CAS  Google Scholar 

  • Asai N, Murakami H, Iwashita T, Takahashi M . (1996). A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem 271: 17644–17649.

    Article  CAS  Google Scholar 

  • Bongarzone I, Vigano E, Alberti L, Borrello MG, Pasini B, Greco A et al. (1998). Full activation of MEN2B mutant RET by an additional MEN2A mutation or by ligand GDNF stimulation. Oncogene 16: 2295–2301.

    Article  CAS  Google Scholar 

  • Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V et al. (1996). Molecular heterogeneity of RET loss of function in Hirschsprung's disease. EMBO J 15: 2717–2725.

    Article  CAS  Google Scholar 

  • Carlomagno F, Melillo RM, Visconti R, Salvatore G, De Vita G, Lupoli G et al. (1998). Glial cell line-derived neurotrophic factor differentially stimulates ret mutants associated with the multiple endocrine neoplasia type 2 syndromes and Hirschsprung's disease. Endocrinol 139: 3613–3619.

    Article  CAS  Google Scholar 

  • Cerchia L, Libri D, Carlomagno MS, de Franciscis V . (2003). The soluble ectodomain of RetC634Y inhibits both the wild-type and the constitutively active Ret. Biochem J 372: 897–903.

    Article  CAS  Google Scholar 

  • Chappuis-Flament S, Pasini A, De Vita G, Ségouffin-Cariou C, Fusco A, Attié T et al. (1998). Dual effect on the RET receptor of MEN 2 mutations affecting specific extracytoplasmic cysteines. Oncogene 17: 2851–2861.

    Article  CAS  Google Scholar 

  • Cosma MP, Cardone M, Carlomagno F, Colantuoni V . (1998). Mutations in the extracellular domain cause RET loss of function by dominant negative mechanism. Mol Cell Biol 18: 3321–3329.

    Article  CAS  Google Scholar 

  • Frêche B, Guillaumot P, Charmetant J, Pelletier L, Luquain C, Christiansen D et al. (2005). Inducible dimerization of RET reveals a specific AKT deregulation in oncogenic signaling. J Biol Chem 280: 36584–36591.

    Article  Google Scholar 

  • Hansford JR, Mulligan LM . (2000). Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet 37: 817–827.

    Article  CAS  Google Scholar 

  • Hwang JH, Kim DW, Suh JM, Kim H, Song JH, Hwang ES et al. (2003). Activation of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: roles in specific gene regulation and cellular transformation. Mol Endocrinol 17: 1155–1166.

    Article  CAS  Google Scholar 

  • Knauf JA, Kuroda H, Basu S, Fagin JA . (2003). RET/PTC induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22: 4406–4412.

    Article  CAS  Google Scholar 

  • Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M et al. (2005). The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 96: 143–148.

    Article  CAS  Google Scholar 

  • Miyagi E, Braga-Basaria M, Hardy E, Vasko V, Burman KD, Jhiang S et al. (2004). Chronic expression of RET/PTC 3 enhances basal and insulin-stimulated PI3 kinase/AKT signalling and increases IRS-2 expression in FRTL-5 thyroid cells. Mol Carcinog 41: 98–107.

    Article  CAS  Google Scholar 

  • Miyazaki K, Asai N, Iwashita T, Taniguchi M, Isomura T, Funahashi H et al. (1993). Tyrosine kinase activity of the RET proto-oncogene products in vitro. Biochem Biophys Res Comm 193: 565–570.

    Article  CAS  Google Scholar 

  • Mulligan LM, Ponder BAJ . (1995). Genetic basis of endocrine disease: multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 80: 1989–1995.

    CAS  PubMed  Google Scholar 

  • Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Attié T et al. (1998). Various mechanisms cause RET-mediated signaling defects in Hirschsprung's disease. J Clin Invest 101: 1415–1423.

    Article  CAS  Google Scholar 

  • Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M et al. (1995). Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267: 381–383.

    Article  CAS  Google Scholar 

  • Salvatore D, Melillo RM, Monaco C, Visconti R, Fenzi G, Vecchio G et al. (2001). Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res 61: 1426–1431.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Buma Y, Taniguchi M . (1991). Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 6: 297–301.

    CAS  PubMed  Google Scholar 

  • Tsui-Pierchala BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson Jr EM . (2002). The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem 277: 34618–34625.

    Article  CAS  Google Scholar 

  • van Weering DHJ, Moen TC, Braakman I, Baas PD, Bos JL . (1998). Expression of the receptor tyrosine kinase Ret on the plasma membrane is dependent on calcium. J Biol Chem 273: 12077–12081.

    Article  CAS  Google Scholar 

  • Virtanen H, Yang J, Bespalov MM, Hiltunen JO, Leppänen V-M, Kalkkinen N et al. (2005). The first cysteine-rich domain of the receptor GFRá1 stabilizes the binding of GDNF. Biochem J 387: 817–824.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brian Tsui-Pierchala and Eugene M Johnson Jr for the RET-P-Tyr905/1015/1062/1096 specific antibodies, Marc Billaud for sending us RET-encoding plasmids, and Maria Lindahl for transferring the RET-encoding inserts into pCR3.1. We also thank Mari Heikkinen for excellent technical assistance, Maria Lindahl and Johan Peränen for fruitful discussions as well as Kerstin Krieglstein and Jukka Kallijärvi for commenting the paper. This project was supported by the EU grant QLG3-CT-2002-01000, the Sigrid Jusélius Foundation and the Academy of Finland (Project No. 105237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Runeberg-Roos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runeberg-Roos, P., Virtanen, H. & Saarma, M. RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface. Oncogene 26, 7909–7915 (2007). https://doi.org/10.1038/sj.onc.1210591

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210591

Keywords

This article is cited by

Search

Quick links