Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas

Abstract

We previously identified a cluster of prostanoid receptor genes, prostaglandin D2 receptor (PTGDR) and prostaglandin E receptor 2 (PTGER2), as possible targets for DNA methylation in advanced types of neuroblastoma (NB) using bacterial artificial chromosome array-based methylated CpG island amplification method. Among them, in this study, we found that PTGER2 was frequently silenced in NB cell lines, especially in those with MYCN amplification, through epigenetic mechanisms. In NB cell lines, DNA methylation pattern within a part of CpG island was inversely correlated with PTGER2 expression, and histone H3 and H4 deacetylation and histone H3 lysine 9 methylation within the putative promoter region were more directly correlated with silencing of this gene. Methylation of PTGER2 was observed more frequently in advanced-type of primary NBs compared with early-stage tumors. Growth of NB cells lacking endogenous PTGER2 expression was inhibited by restoration of the gene product by transient and stable transfection. A PTGER2-selective agonist, butaprost, increased intracellular cyclic adenosine monophosphate (cAMP) level, inhibited cell growth and induced apoptosis of NB cells stably expressing exogenous PTGER2. 8-Bromo-cAMP also inhibited growth of NB cells lacking PTGER2 expression, but not cells expressing this gene. Taken together, it is suggested that NB cells may lose responsiveness to PTGER2-mediated growth inhibition/apoptosis through epigenetic silencing of PTGER2 and/or disruption of downstream cAMP-dependent pathway during the neuroblastomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abe M, Ohira M, Kaneda A, Yagi Y, Yamamoto S, Kitano Y et al. (2005). CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. Cancer Res 65: 828–834.

    CAS  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM et al. (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8: 532–538.

    Article  CAS  Google Scholar 

  • Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP et al. (1993). Revision of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11: 1466–1477.

    Article  CAS  Google Scholar 

  • Brodeur GM . (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216.

    Article  CAS  Google Scholar 

  • Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS . (2005). Prostaglandin E2 promotes colon cancer cell growth through a GS-axin-beta-catenin signaling axis. Science 310: 1504–1510.

    Article  CAS  Google Scholar 

  • Chen TC, Hinton DR, Zidovetzki R, Hofman FM . (1998). Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest 78: 165–174.

    CAS  PubMed  Google Scholar 

  • del Carmen Mejia M, Navarro S, Pellin A, Ruiz A, Castel V, Llombart-Bosch A . (2002). Study of proliferation and apoptosis in neuroblastoma. Their relation with other prognostic factors. Arch Med Res 33: 466–472.

    Article  Google Scholar 

  • Fedyk ER, Ripper JM, Brown DM, Phipps RP . (1996). A molecular analysis of PGE receptor (EP) expression on normal and transformed B lymphocytes: coexpression of EP1, EP2, EP3beta and EP4. Mol Immunol 33: 33–45.

    Article  CAS  Google Scholar 

  • Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ . (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38: 540–549.

    Article  CAS  Google Scholar 

  • Fulton AM, Laterra JJ, Hanchin CM . (1989). Prostaglandin E2 receptor heterogeneity and dysfunction in mammary tumor cells. J Cell Physiol 139: 93–99.

    Article  CAS  Google Scholar 

  • Hata AN, Breyer RM . (2004). Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol Ther 103: 147–166.

    Article  CAS  Google Scholar 

  • Hoshino T, Tsutsumi S, Tomisato W, Hwang HJ, Tsuchiya T, Mizushima T . (2003). Prostaglandin E2 protects gastric mucosal cells from apoptosis via EP2 and EP4 receptor activation. J Biol Chem 278: 12752–12758.

    Article  CAS  Google Scholar 

  • Inazawa J, Inoue J, Imoto I . (2004). Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci 95: 559–563.

    Article  CAS  Google Scholar 

  • Johnsen JI, Lindskog M, Ponthan F, Pettersen I, Elfman L, Orrego A et al. (2004). Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64: 7210–7215.

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  Google Scholar 

  • Kondo Y, Shen L, Issa JP . (2003). Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol 23: 206–215.

    Article  CAS  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M . (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11: 1068–1075.

    Article  CAS  Google Scholar 

  • Misawa A, Inoue J, Sugino Y, Hosoi H, Sugimoto T, Hosoda F et al. (2005). Methylation-associated silencing of the Nuclear Receptor 1I2 gene in advanced-type Neuroblastomas, Identified by Bacterial Artificial Chromosome Array-Based Methylated CpG Island Amplification. Cancer Res 65: 10233–10242.

    Article  CAS  Google Scholar 

  • Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y et al. (2003). Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22: 8835–8844.

    Article  CAS  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F . (1999). Prostanoid receptors: structures, properties, and functions. Physiol Rev 79: 1193–1226.

    Article  CAS  Google Scholar 

  • Okuyama T, Ishihara S, Sato H, Rumi MA, Kawashima K, Miyaoka Y et al. (2002). Activation of prostaglandin E2-receptor EP2 and EP4 pathways induces growth inhibition in human gastric carcinoma cell lines. J Lab Clin Med 140: 92–102.

    Article  CAS  Google Scholar 

  • Regan JW . (2003). EP2 and EP4 prostanoid receptor signaling. Life Sci 74: 143–153.

    Article  CAS  Google Scholar 

  • Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto S et al. (2003). PPM1D Is a Potential Target for 17q Gain in Neuroblastoma. Cancer Res 63: 1876–1883.

    CAS  PubMed  Google Scholar 

  • Santoro MG, Philpott GW, Jaffe BM . (1977). Inhibition of B-16 melanoma growth in vivo by a synthetic analog of prostaglandin E2. Cancer Res 37: 3774–3779.

    CAS  PubMed  Google Scholar 

  • Schubeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE et al. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol 20: 9103–9112.

    Article  CAS  Google Scholar 

  • Sonoda I, Imoto I, Inoue J, Shibata T, Shimada Y, Chin K et al. (2004). Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma. Cancer Res 64: 3741–3747.

    Article  CAS  Google Scholar 

  • Stirzaker C, Song JZ, Davidson B, Clark SJ . (2004). Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64: 3871–3877.

    Article  CAS  Google Scholar 

  • Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R . (2005). Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol 25: 3923–3933.

    Article  CAS  Google Scholar 

  • Suda M, Tanaka K, Natsui T, Usui T, Tanaka I, Fukushima M et al. (1996). Prostaglandin E receptor subtypes in mouse osteoblastic cell line. Endocrinology 137: 1698–1705.

    Article  CAS  Google Scholar 

  • Takadera T, Shiraishi Y, Ohyashiki T . (2004). Prostaglandin E2 induced caspase-dependent apoptosis possibly through activation of EP2 receptors in cultured hippocampal neurons. Neurochem Int 45: 713–719.

    Article  CAS  Google Scholar 

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529–535.

    Article  CAS  Google Scholar 

  • Thompson PM, Seigfried BA, Kyemba SK, Jensen SJ, Guo C, Maris JM et al. (2001). Loss of heterozygosity for chromosome 14q in neuroblastoma. Med Pediatr Oncol 36: 28–31.

    Article  CAS  Google Scholar 

  • Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M et al. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59: 2307–2312.

    CAS  PubMed  Google Scholar 

  • Wang D, Buchanan FG, Wang H, Dey SK, DuBois RN . (2005a). Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res 65: 1822–1829.

    Article  CAS  Google Scholar 

  • Wang D, DuBois RN . (2006). Prostaglandins and cancer. Gut 55: 115–122.

    Article  CAS  Google Scholar 

  • Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q et al (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203: 941–951.

    Article  CAS  Google Scholar 

  • Wang HM, Zheng NG, Wu JL, Gong CC, Wang YL . (2005b). Dual effects of 8-Br-cAMP on differentiation and apoptosis of human esophageal cancer cell line Eca-109. World J Gastroenterol 11: 6538–6542.

    Article  Google Scholar 

  • Westermann F, Schwab M . (2002). Genetic parameters of neuroblastomas. Cancer Lett 184: 127–147.

    Article  CAS  Google Scholar 

  • Wolffe AP, Matzke MA . (1999). Epigenetics: regulation through repression. Science 286: 481–486.

    Article  CAS  Google Scholar 

  • Xiong Z, Laird PW . (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532–2534.

    Article  CAS  Google Scholar 

  • Yamada N, Hamada T, Goto M, Tsutsumida H, Higashi M, Nomoto M et al. (2006). MUC2 expression is regulated by histone H3 modification and DNA methylation in pancreatic cancer. Int J Cancer 119: 1850–1857.

    Article  CAS  Google Scholar 

  • Yan P, Muhlethaler A, Bourloud KB, Beck MN, Gross N . (2003). Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma. Gene Chromosome Cancer 36: 129–138.

    Article  CAS  Google Scholar 

  • Yang Q, Zage P, Kagan D, Tian Y, Seshadri R, Salwen HR et al. (2004). Association of epigenetic inactivation of RASSF1A with poor outcome in human neuroblastoma. Clin Cancer Res 10: 8493–8500.

    Article  CAS  Google Scholar 

  • Yang QW, Liu S, Tian Y, Salwen HR, Chlenski A, Weinstein J et al. (2003). Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res 63: 6299–6310.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research on Priority Areas (C) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; by a Grant-in-Aid from Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST); and by a 21st Century Center of Excellence (COE) Program for Molecular Destruction and Reconstitution of Tooth and Bone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Inazawa.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugino, Y., Misawa, A., Inoue, J. et al. Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 26, 7401–7413 (2007). https://doi.org/10.1038/sj.onc.1210550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210550

Keywords

This article is cited by

Search

Quick links