Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism

Abstract

Loss of E-cadherin-mediated cell–cell junctions has been correlated with cancer cell invasion and poor patient survival. p120-catenin has emerged as a key player in promoting E-cadherin stability and adherens junction integrity and has been proposed as a potential invasion suppressor by preventing release of cells from the constraints imposed by cadherin-mediated cell–cell adhesion. However, it has been proposed that tyrosine phosphorylation of p120 may contribute to cadherin-dependent junction disassembly during invasion. Here, we use small interfering RNA (siRNA) in A431 cells to show that knockdown of p120 promotes two-dimensional migration of cells. In contrast, p120 knockdown impairs epidermal growth factor-induced A431 invasion into three-dimensional matrix gels or in organotypic culture, whereas re-expression of siRNA-resistant p120, or a p120 isoform that cannot be phosphorylated on tyrosine, restores the collective mode of invasion employed by A431 cells in vitro. Thus, p120 promotes A431 cell invasion in a phosphorylation-independent manner. We show that the collective invasion of A431 cells depends on the presence of cadherin-mediated (P- and E-cadherin) cell–cell contacts, which are lost in cells where p120 expression is knocked down. Furthermore, membranous p120 is maintained in invasive squamous cell carcinomas in tumours suggesting that p120 may be important for the collective invasion of tumours cells in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Anastasiadis PZ, Reynolds AB . (2000). The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci 113 (Part 8): 1319–1334.

    CAS  PubMed  Google Scholar 

  • Aono S, Nakagawa S, Reynolds AB, Takeichi M . (1999). p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J Cell Biol 145: 551–562.

    Article  CAS  Google Scholar 

  • Ardern H, Sandilands E, Machesky LM, Timpson P, Frame MC, Brunton VG . (2006). Src-dependent phosphorylation of Scar1 promotes its association with the Arp2/3 complex. Cell Motil Cytoskeleton 63: 6–13.

    Article  CAS  Google Scholar 

  • Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG et al. (2002). Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4: 632–638.

    Article  CAS  Google Scholar 

  • Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM . (2005). Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 65: 10938–10945.

    Article  CAS  Google Scholar 

  • Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf III CA, Sawyer TK et al. (2005). Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65: 1335–1342.

    Article  CAS  Google Scholar 

  • Brunton VG, MacPherson IR, Frame MC . (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta 1692: 121–144.

    Article  CAS  Google Scholar 

  • Cozzolino M, Stagni V, Spinardi L, Campioni N, Fiorentini C, Salvati E et al. (2003). p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell 14: 1964–1977.

    Article  CAS  Google Scholar 

  • Daniel JM, Reynolds AB . (1999). The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 19: 3614–3623.

    Article  CAS  Google Scholar 

  • Davis MA, Ireton RC, Reynolds AB . (2003). A core function for p120-catenin in cadherin turnover. J Cell Biol 163: 525–534.

    Article  CAS  Google Scholar 

  • Davis MA, Reynolds AB . (2006). Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev Cell 10: 21–31.

    Article  CAS  Google Scholar 

  • Friedl P, Hegerfeldt Y, Tusch M . (2004). Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48: 441–449.

    Article  CAS  Google Scholar 

  • Grosheva I, Shtutman M, Elbaum M, Bershadsky AD . (2001). p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell–cell contact formation and regulation of cell locomotion. J Cell Sci 114: 695–707.

    CAS  PubMed  Google Scholar 

  • Hajra KM, Fearon ER . (2002). Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34: 255–268.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA . (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148: 779–790.

    Article  CAS  Google Scholar 

  • Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA et al. (2002). A novel role for p120 catenin in E-cadherin function. J Cell Biol 159: 465–476.

    Article  CAS  Google Scholar 

  • Ishizaki Y, Omori Y, Momiyama M, Nishikawa Y, Tokairin T, Manabe M et al. (2004). Reduced expression and aberrant localization of p120catenin in human squamous cell carcinoma of the skin. J Dermatol Sci 34: 99–108.

    Article  CAS  Google Scholar 

  • Islam S, Carey TE, Wolf GT, Wheelock MJ, Johnson KR . (1996). Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell–cell adhesion. J Cell Biol 135: 1643–1654.

    Article  CAS  Google Scholar 

  • Jensen PJ, Telegan B, Lavker RM, Wheelock MJ . (1997). E-cadherin and P-cadherin have partially redundant roles in human epidermal stratification. Cell Tissue Res 288: 307–316.

    Article  CAS  Google Scholar 

  • Keirsebilck A, Bonne S, Staes K, van Hengel J, Nollet F, Reynolds A et al. (1998). Molecular cloning of the human p120ctn catenin gene (CTNND1): expression of multiple alternatively spliced isoforms. Genomics 50: 129–146.

    Article  CAS  Google Scholar 

  • Kelly KF, Spring CM, Otchere AA, Daniel JM . (2004). NLS-dependent nuclear localization of p120ctn is necessary to relieve Kaiso-mediated transcriptional repression. J Cell Sci 117: 2675–2686.

    Article  CAS  Google Scholar 

  • Kurokawa K, Itoh RE, Yoshizaki H, Nakamura YO, Matsuda M . (2004). Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol Biol Cell 15: 1003–1010.

    Article  CAS  Google Scholar 

  • Lim YP, Diong LS, Qi R, Druker BJ, Epstein RJ . (2003). Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells. Mol Cancer Ther 2: 1369–1377.

    CAS  PubMed  Google Scholar 

  • Malliri A, Symons M, Hennigan RF, Hurlstone AF, Lamb RF, Wheeler T et al. (1998). The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J Cell Biol 143: 1087–1099.

    Article  CAS  Google Scholar 

  • Mareel M, Leroy A . (2003). Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83: 337–376.

    Article  CAS  Google Scholar 

  • Mariner DJ, Anastasiadis P, Keilhack H, Bohmer FD, Wang J, Reynolds AB . (2001). Identification of Src phosphorylation sites in the catenin p120ctn. J Biol Chem 276: 28006–28013.

    Article  CAS  Google Scholar 

  • Mariner DJ, Davis MA, Reynolds AB . (2004). EGFR signaling to p120-catenin through phosphorylation at Y228. J Cell Sci 117: 1339–1350.

    Article  CAS  Google Scholar 

  • McLean GW, Owsianka AM, Subak-Sharpe JH, Marsden HS . (1991). Generation of anti-peptide and anti-protein sera. Effect of peptide presentation on immunogenicity. J Immunol Methods 137: 149–157.

    Article  CAS  Google Scholar 

  • Noren NK, Liu BP, Burridge K, Kreft B . (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150: 567–580.

    Article  CAS  Google Scholar 

  • Ozawa M, Ohkubo T . (2001). Tyrosine phosphorylation of p120(ctn) in v-Src transfected L cells depends on its association with E-cadherin and reduces adhesion activity. J Cell Sci 114: 503–512.

    CAS  PubMed  Google Scholar 

  • Park JI, Kim SW, Lyons JP, Ji H, Nguyen TT, Cho K et al. (2005). Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev Cell 8: 843–854.

    Article  CAS  Google Scholar 

  • Peifer M, Polakis P . (2000). Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287: 1606–1609.

    Article  CAS  Google Scholar 

  • Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E . (2006). p120-catenin mediates inflammatory responses in the skin. Cell 124: 631–644.

    Article  CAS  Google Scholar 

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193.

    Article  CAS  Google Scholar 

  • Plumb JA, Milroy R, Kaye SB . (1989). Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49: 4435–4440.

    CAS  PubMed  Google Scholar 

  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR . (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23: 1739–1748.

    Article  CAS  Google Scholar 

  • Sahai E . (2005). Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15: 87–96.

    Article  CAS  Google Scholar 

  • Scott LA, Vass JK, Parkinson EK, Gillespie DA, Winnie JN, Ozanne BW . (2004). Invasion of normal human fibroblasts induced by v-Fos is independent of proliferation, immortalization, and the tumor suppressors p16INK4a and p53. Mol Cell Biol 24: 1540–1559.

    Article  CAS  Google Scholar 

  • Shibata T, Kokubu A, Sekine S, Kanai Y, Hirohashi S . (2004). Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. Am J Pathol 164: 2269–2278.

    Article  CAS  Google Scholar 

  • Spring CM, Kelly KF, O’Kelly I, Graham M, Crawford HC, Daniel JM . (2005). The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin. Exp Cell Res 305: 253–265.

    Article  CAS  Google Scholar 

  • Strathdee G . (2002). Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol 12: 373–379.

    Article  CAS  Google Scholar 

  • Thelemann A, Petti F, Griffin G, Iwata K, Hunt T, Settinari T et al. (2005). Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteomics 4: 356–376.

    Article  CAS  Google Scholar 

  • Thoreson MA, Reynolds AB . (2002). Altered expression of the catenin p120 in human cancer: implications for tumor progression. Differentiation 70: 583–589.

    Article  CAS  Google Scholar 

  • van Hengel J, Vanhoenacker P, Staes K, van Roy F . (1999). Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc Natl Acad Sci USA 96: 7980–7985.

    Article  CAS  Google Scholar 

  • van Roy FM, McCrea PD . (2005). A role for Kaiso-p120ctn complexes in cancer? Nat Rev Cancer 5: 956–964.

    Article  CAS  Google Scholar 

  • Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, van Roy F . (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119.

    Article  CAS  Google Scholar 

  • Wheelock MJ, Johnson KR . (2003). Cadherin-mediated cellular signaling. Curr Opin Cell Biol 15: 509–514.

    Article  CAS  Google Scholar 

  • Xia X, Mariner DJ, Reynolds AB . (2003). Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of p120-catenin. Biochemistry 42: 9195–9204.

    Article  CAS  Google Scholar 

  • Xiao K, Allison DF, Buckley KM, Kottke MD, Vincent PA, Faundez V et al. (2003). Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol 163: 535–545.

    Article  CAS  Google Scholar 

  • Yanagisawa M, Anastasiadis PZ . (2006). p120 catenin is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness. J Cell Biol 174: 1087–1096.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V G Brunton.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macpherson, I., Hooper, S., Serrels, A. et al. p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene 26, 5214–5228 (2007). https://doi.org/10.1038/sj.onc.1210334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210334

Keywords

This article is cited by

Search

Quick links