Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach

Abstract

Mutations in the DNA mismatch repair gene MLH1 are a major cause of hereditary nonpolyposis colorectal cancer (HNPCC). No mutant phenotype is observed before the wild-type (wt) allele is somatically inactivated in target tissue. We addressed the mechanisms of MLH1 inactivation in 25 colorectal (CRC) and 32 endometrial cancers (ECs) from MLH1 mutation carriers (Mut1, in-frame genomic deletion; Mut2, out-of-frame splice site mutation; Mut3, missense mutation). By a quantitative method, matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF), utilizing four intragenic single nucleotide polymorphisms and mutations, loss of heterozygosity (LOH) was present in 31/57 (54.4%) of tumors. The wt allele displayed LOH more often than the mutant allele (23/57 vs 8/57, P=0.006). For Mut1, LOH was more frequent in CRC than EC (10/11 vs 1/13, P<0.0001), whereas Mut2 and Mut3 displayed opposite LOH pattern. Moreover, although wt LOH predominated in CRC irrespective of the predisposing mutation, LOH often affected the mutant allele in EC from Mut2 and Mut3 carriers (6/19, 31.6%). MLH1 promoter methylation, which reflected a more widespread hypermethylation tendency, occurred in 4/55 (7.3%) of tumors and was inversely associated with LOH. In conclusion, the patterns of somatic events (LOH and promoter methylation) differ depending on the tissue and germline mutation, which may in part explain the differential tumor susceptibility of different organs in HNPCC. MALDI-TOF provides a novel approach for the detection and quantification of LOH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ et al. (2002). The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11: 1549–1560.

    Article  CAS  PubMed  Google Scholar 

  • Benedet JL, Bender H, Jones III H, Ngan HY, Pecorelli S . (2000). FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO committee on gynecologic oncology. Int J Gynaecol Obstet 70: 209–262.

    Article  CAS  PubMed  Google Scholar 

  • Cejka P, Stojic L, Mojas N, Russell AM, Heinimann K, Cannavo E et al. (2003). Methylation-induced G(2)/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO J 22: 2245–2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadwick RB, Pyatt RE, Niemann TH, Richards SK, Johnson CK, Stevens MW et al. (2001). Hereditary and somatic DNA mismatch repair gene mutations in sporadic endometrial carcinoma. J Med Genet 38: 461–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ et al. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58: 3455–3460.

    CAS  PubMed  Google Scholar 

  • De Rosa M, Fasano C, Panariello L, Scarano MI, Belli G, Iannelli A et al. (2000). Evidence for a recessive inheritance of Turcot's syndrome caused by compound heterozygous mutations within the PMS2 gene. Oncogene 19: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  • de Wind N, Dekker M, van Rossum A, van der Valk M, te Riele H . (1998). Mouse models for hereditary nonpolyposis colorectal cancer. Cancer Res 58: 248–255.

    CAS  PubMed  Google Scholar 

  • Deng G, Chen A, Hong J, Chae HS, Kim YS . (1999). Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res 59: 2029–2033.

    CAS  PubMed  Google Scholar 

  • Dixon LA, Dobbins AE, Pulker HK, Butler JM, Vallone PM, Coble MD et al. (2006). Analysis of artificially degraded DNA using STRs and SNPs-results of a collaborative European (EDNAP) exercise. Forensic Sci Int 164: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Dukes C . (1932). The classification of cancer of the rectum. J Pathol Bacteriol 35: 323–332.

    Article  Google Scholar 

  • Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK et al. (2001). DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10: 3001–3007.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG . (1998). MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 17: 2413–2417.

    Article  CAS  PubMed  Google Scholar 

  • Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S et al. (2002). Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol 160: 2055–2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemminki A, Peltomaki P, Mecklin JP, Jarvinen H, Salovaara R, Nystrom-Lahti M et al. (1994). Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet 8: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP et al (1998). Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95: 6870–6875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isola J, DeVries S, Chu L, Ghazvini S, Waldman F . (1994). Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol 145: 1301–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jager AC, Bisgaard ML, Myrhoj T, Bernstein I, Rehfeld JF, Nielsen FC . (1997). Reduced frequency of extracolonic cancers in hereditary nonpolyposis colorectal cancer families with monoallelic hMLH1 expression. Am J Hum Genet 61: 129–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudson Jr AG . (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuismanen SA, Holmberg MT, Salovaara R, de la Chapelle A, Peltomaki P . (2000). Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol 156: 1773–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P et al. (1996). Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 2: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Moisio AL, Sistonen P, Weissenbach J, de la Chapelle A, Peltomaki P . (1996). Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer. Am J Hum Genet 59: 1243–1251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagase T, Kikuno R, Hattori A, Kondo Y, Okumura K, Ohara O . (2000). Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 7: 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides NC, Littman SJ, Modrich P, Kinzler KW, Vogelstein B . (1998). A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol Cell Biol 18: 1635–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystrom-Lahti M, Kristo P, Nicolaides NC, Chang SY, Aaltonen LA, Moisio AL et al. (1995). Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med 1: 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  • Nystrom-Lahti M, Wu Y, Moisio AL, Hofstra RM, Osinga J, Mecklin JP et al. (1996). DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary non-polyposis colorectal cancer. Hum Mol Genet 5: 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M, Fuse T et al. (2006). Molecular identification and characterization of a family of kinases with homology to CaMKI/CaMKIV. J Biol Chem 281: 20427–20439.

    Article  CAS  PubMed  Google Scholar 

  • Ollikainen M, Abdel-Rahman WM, Moisio AL, Lindroos A, Kariola R, Jarvela I et al. (2005). Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome? J Clin Oncol 23: 4609–4616.

    Article  CAS  PubMed  Google Scholar 

  • Peltomaki P, Gao X, Mecklin JP . (2001). Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs shared predisposing mutations. Fam Cancer 1: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Peltomaki P, Vasen H . (2004). Mutations associated with HNPCC predisposition – update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20: 269–276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petkovski E, Keyser-Tracqui C, Hienne R, Ludes B . (2005). SNPs and MALDI-TOF MS: tools for DNA typing in forensic paternity testing and anthropology. J Forensic Sci 50: 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Potocnik U, Glavac D, Golouh R, Ravnik-Glavac M . (2001). Causes of microsatellite instability in colorectal tumors: implications for hereditary non-polyposis colorectal cancer screening. Cancer Genet Cytogenet 126: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Protopopov A, Kashuba V, Zabarovska VI, Muravenko OV, Lerman MI, Klein G et al. (2003). An integrated physical and gene map of the 3.5-Mb chromosome 3p21.3 (AP20) region implicated in major human epithelial malignancies. Cancer Res 63: 404–412.

    CAS  PubMed  Google Scholar 

  • Raevaara TE, Korhonen MK, Lohi H, Hampel H, Lynch E, Lonnqvist KE et al. (2005). Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129: 537–549.

    CAS  PubMed  Google Scholar 

  • Renkonen E, Zhang Y, Lohi H, Salovaara R, Abdel-Rahman WM, Nilbert M et al. (2003). Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol 21: 3629–3637.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez de Abajo A, de la Hoya M, van Puijenbroek M, Godino J, Diaz-Rubio E, Morreau H et al. (2006). Dual role of LOH at MMR loci in hereditary non-polyposis colorectal cancer? Oncogene 25: 2124–2130.

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Nanri Y, Yamamura T . (2006). Rapid identification of 14-3-3-binding proteins by protein microarray analysis. J Neurosci Methods 152: 278–288.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Moisio AL, Kuismanen SA, Truninger K, Vierumaki R, Salovaara R et al. (2001). Lack of MSH2 and MSH6 characterizes endometrial but not colon carcinomas in hereditary nonpolyposis colorectal cancer. Cancer Res 61: 2813–2815.

    CAS  PubMed  Google Scholar 

  • Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ et al. (1999). MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet 8: 661–666.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kawai J, Taga C, Yaoi T, Hara A, Hirose K et al. (1996). Stac, a novel neuron-specific protein with cysteine-rich and SH3 domains. Biochem Biophys Res Commun 229: 902–909.

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Takahashi M, Sanada M, Ito R, Yamaizumi M, Sekiguchi M . (2003). Roles of MGMT and MLH1 proteins in alkylation-induced apoptosis and mutagenesis. DNA Repair (Amst) 2: 1135–1146.

    Article  CAS  Google Scholar 

  • Tannergard P, Liu T, Weger A, Nordenskjold M, Lindblom A . (1997). Tumorigenesis in colorectal tumors from patients with hereditary non-polyposis colorectal cancer. Hum Genet 101: 51–55.

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP . (1999). CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96: 8681–8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsuno H, Minaguchi K . (2004). Influence of template DNA degradation on the genotyping of SNPs and STR polymorphisms from forensic materials by PCR. Bull Tokyo Dent Coll 45: 33–46.

    Article  CAS  PubMed  Google Scholar 

  • van Puijenbroek M, Dierssen JW, Stanssens P, van Eijk R, Cleton-Jansen AM, van Wezel T et al. (2005). Mass spectrometry-based loss of heterozygosity analysis of single-nucleotide polymorphism loci in paraffin embedded tumors using the MassEXTEND assay: single-nucletide polymorphism loss of heterozygosity analysis of the protein tyrosine phosphatase receptor type J in familial colorectal cancer. J Mol Diagn 7: 623–630.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S et al. (1998). Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA 95: 8698–8702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler JM, Loukola A, Aaltonen LA, Mortensen NJ, Bodmer WF . (2000). The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers. J Med Genet 37: 588–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A et al. (1999). Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 23: 142–144.

    Article  CAS  PubMed  Google Scholar 

  • Yuen ST, Chan TL, Ho JW, Chan AS, Chung LP, Lam PW et al. (2002). Germline, somatic and epigenetic events underlying mismatch repair deficiency in colorectal and HNPCC-related cancers. Oncogene 21: 7585–7592.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lindroos A, Ollila S, Russell A, Marra G, Mueller H et al. (2006). Gene conversion is a frequent mechanism of inactivation of the wild-type allele in cancers from MLH1/MSH2 deletion carriers. Cancer Res 66: 659–664.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Saila Saarinen for expert technical assistance. Heli Surma-Aho and Katja Kuosa are acknowledged for assistance with sample collection. This study was supported by the Sigrid Juselius Foundation, the Academy of Finland, the Finnish Cancer Foundation, the Finnish Cultural Foundation, the Finnish Cultural Foundation Kymenlaakso Fund, the Paulo Foundation, the Ida Montin Foundation, the Helsinki University Funds, Swedish Research Council and Swedish Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ollikainen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollikainen, M., Hannelius, U., Lindgren, C. et al. Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach. Oncogene 26, 4541–4549 (2007). https://doi.org/10.1038/sj.onc.1210236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210236

Keywords

This article is cited by

Search

Quick links