Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1α-directed invasion of human basal cell carcinoma cells

Abstract

Basal cell carcinoma (BCC) is one of the most common skin neoplasms in humans and is usually characterized by local aggressiveness with little metastatic potential, although deep invasion, recurrence, and regional and distant metastases may occur. Here, we studied the mechanism of BCC invasion. We found that human BCC tissues and a BCC cell line had significant expression of CXCR4, which was higher in invasive than non-invasive BCC types. Further, of 19 recurrent tumors among 390 BCCs diagnosed during the past 12 years, 17/19 (89.5%) had high CXCR4 expression. We found that the CXCR4 ligand, stromal-cell-derived factor 1α (SDF-1α), directed BCC invasion and that this was mediated by time-dependent upregulation of mRNA expression and gelatinase activity of matrix metalloproteinase-13 (MMP-13). The transcriptional regulation of MMP-13 by SDF-1α was mediated by phosphorylation of extracellular signal-related kinase 1/2 and activation of the AP-1 component c-Jun. Finally, CXCR4-transfected BCC cells injected into nude mice induced aggressive BCCs that co-expressed CXCR4 and MMP-13. The identification of SDF-1α/CXCR4 as an important factor in BCC invasiveness may contribute insight into mechanisms involved in the aggressive potential of human BCC and may improve therapy for invasive BCCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Airola K, Johansson N, Kariniemi AL, Kähäri VM, Saarialho-Kere UK . (1997). Human collagenase-3 is expressed in malignant squamous epithelium of the skin. J Invest Dermatol 109: 225–231.

    Article  CAS  Google Scholar 

  • Ala-aho R, Kähäri VM . (2005). Collagenases in cancer. Biochimie 87: 273–286.

    Article  CAS  Google Scholar 

  • Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD et al. (2006). Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J Invest Dermatol 126: 468–476.

    Article  CAS  Google Scholar 

  • Bachelder RE, Wendt MA, Mercurio AM . (2002). Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62: 7203–7206.

    CAS  Google Scholar 

  • Bajetto A, Barbero S, Bonavia R, Piccioli P, Pirani P, Florio T et al. (2001). Stromal cell-derived factor-1α induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J Neurochem 77: 1226–1236.

    Article  CAS  Google Scholar 

  • Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL et al. (2003). Stromal cell-derived factor 1α stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63: 1969–1974.

    CAS  Google Scholar 

  • Bartolomé RA, Gálvez BG, Longo N, Baleux F, van Muijen GNP, Sánchez-Mateos P et al. (2004). Stromal cell-derived factor-1α promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res 64: 2534–2543.

    Article  Google Scholar 

  • Bartolomé RA, Molina-Ortiz I, Samaniego R, Sánchez-Mateos P, Bustelo XR, Teixido J . (2006). Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion. Cancer Res 66: 248–258.

    Article  Google Scholar 

  • Brand S, Dambacher J, Beigel F, Olszak T, Diebold J, Otte JM et al. (2005). CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 310: 117–130.

    Article  CAS  Google Scholar 

  • Burger JA, Kipps TJ . (2006). CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107: 1761–1767.

    Article  CAS  Google Scholar 

  • Chen GS, Yu HS, Lan CCE, Chow KC, Lin TY, Kok LF et al. (2006). CXC chemokine receptor CXCR4 expression enhances tumorigenesis and angiogenesis of basal cell carcinoma. Br J Dermatol 154: 910–918.

    Article  CAS  Google Scholar 

  • De Clercq E . (2003). The bicyclam AMD3100 story. Nat Rev Drug Discov 2: 581–587.

    Article  CAS  Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG . (1983). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489.

    Article  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G . (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747–754.

    Article  CAS  Google Scholar 

  • Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A . (1999). Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res 19: 2929–2938.

    CAS  PubMed  Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.

    Article  CAS  Google Scholar 

  • Egeblad M, Werb Z . (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.

    Article  CAS  Google Scholar 

  • Fernandis AZ, Prasad A, Band H, Klösel R, Ganju RK . (2004). Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23: 157–167.

    Article  CAS  Google Scholar 

  • Forsyth CB, Pulai J, Loeser RF . (2002). Fibronectin fragments and blocking antibodies to α2β1 and α5β1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 46: 2368–2376.

    Article  CAS  Google Scholar 

  • Hatse S, Princen K, Bridger G, De Clercq E, Schols D . (2002). Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527: 255–262.

    Article  CAS  Google Scholar 

  • Jee SH, Chiu HC, Tsai TF, Tsai WL, Liao YH, Chu CY et al. (2002). The phosphatidyl inositol 3-kinase/Akt signal pathway is involved in interleukin-6-mediated Mcl-1 upregulation and anti-apoptosis activity in basal cell carcinoma cells. J Invest Dermatol 119: 1121–1127.

    Article  CAS  Google Scholar 

  • Jee SH, Chu CY, Chiu HC, Huang YL, Tsai WL, Liao YH et al. (2004). Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J Invest Dermatol 123: 1169–1175.

    Article  CAS  Google Scholar 

  • Jiménez MJG, Balbín M, López JM, Alvarez J, Komori T, López-Otín C . (1999). Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 19: 4431–4442.

    Article  Google Scholar 

  • Kerkelä E, Saarialho-Kere U . (2003). Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12: 109–125.

    Article  Google Scholar 

  • Kijima T, Maulik G, Ma PC, Tibaldi EV, Turner RE, Rollins B et al. (2002). Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res 62: 6304–6311.

    CAS  Google Scholar 

  • Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY . (2005). CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther 12: 84–89.

    Article  CAS  Google Scholar 

  • Lear JT, Harvey I, de Berker D, Strange RC, Fryer AA . (1998). Basal cell carcinoma. J R Soc Med 91: 585–588.

    Article  CAS  Google Scholar 

  • Leeman MF, Curran S, Murray GI . (2002). The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol 37: 149–166.

    Article  CAS  Google Scholar 

  • Menu E, Asosingh K, Indraccolo S, de Raeve H, van Riet I, van Valckenborgh E et al. (2006). The involvement of stromal derived factor 1α in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91: 605–612.

    CAS  Google Scholar 

  • Mueller MM, Fusenig NE . (2004). Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–849.

    Article  CAS  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  Google Scholar 

  • Murphy PM . (1996). Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev 7: 47–64.

    Article  CAS  Google Scholar 

  • Neuhaus T, Stier S, Totzke G, Gruenewald E, Fronhoffs S, Sachinidis A et al. (2003). Stromal cell-derived factor 1α (SDF-1α) induces gene-expression of early growth response (Erg-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Prolif 36: 75–86.

    Article  CAS  Google Scholar 

  • Ohira S, Sasaki M, Harada K, Sato Y, Zen Y, Isse K et al. (2006). Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-α and stromal-derived factor-1 released in stroma. Am J Pathol 168: 1155–1168.

    Article  CAS  Google Scholar 

  • Payne AS, Cornelius LA . (2002). The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118: 915–922.

    Article  CAS  Google Scholar 

  • Pendás AM, Balbín M, Llano E, Jiménez MG, López-Otín C . (1997). Structural analysis and promoter characterization of the human collagenase-3 gene (MMP-13). Genomics 40: 222–233.

    Article  Google Scholar 

  • Pendás AM, Uría JA, Jiménez MG, Balbín M, Freije JP, López-Otín C . (2000). An overview of collagenase-3 expression in malignant tumors and analysis of its potential value as a target in antitumor therapies. Clin Chim Acta 291: 137–155.

    Article  Google Scholar 

  • Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM . (2003). The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 167: 1676–1686.

    Article  Google Scholar 

  • Poulsom R, Hanby AM, Pignatelli M, Jeffery RE, Longcroft JM, Rogers L et al. (1993). Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol 46: 429–436.

    Article  CAS  Google Scholar 

  • Rippey JJ . (1998). Why classify basal cell carcinomas? Histopathology 32: 393–398.

    Article  CAS  Google Scholar 

  • Saur D, Seidler B, Schneider G, Algül H, Beck R, Senekowitsch-Schmidtke R et al. (2005). CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129: 1237–1250.

    Article  CAS  Google Scholar 

  • Singh S, Singh UP, Grizzle WE, Lillard Jr JW . (2004). CXCL12–CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 84: 1666–1676.

    Article  CAS  Google Scholar 

  • Strieter RM . (2001). Chemokines: not just leukocyte chemoattractants in the promotion of cancer. Nat Immunol 2: 285–286.

    Article  CAS  Google Scholar 

  • Uría JA, Jiménez MG, Balbín M, Freije JMP, López-Otín C . (1998). Differential effects of transforming growth factor-β on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J Biol Chem 273: 9769–9777.

    Article  Google Scholar 

  • Uría JA, Ståhle-Bäckdahl M, Seiki M, Fueyo A, López-Otín C . (1997). Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal–epithelial cell interactions. Cancer Res 57: 4882–4888.

    PubMed  Google Scholar 

  • Varani J, Hattori Y, Chi Y, Schmidt T, Perone P, Zeigler ME et al. (2000). Collagenolytic and gelatinolytic matrix metalloproteinases and their inhibitors in basal cell carcinoma of skin: comparison with normal skin. Br J Cancer 82: 657–665.

    Article  CAS  Google Scholar 

  • Walling HW, Fosko SW, Geraminejad PA, Whitaker DC, Arpey CJ . (2004). Aggressive basal cell carcinoma: presentation, pathogenesis, and management. Cancer Metast Rev 23: 389–402.

    Article  Google Scholar 

  • Woodhouse EC, Chuaqui RF, Liotta LA . (1997). General mechanisms of metastasis. Cancer 80: 1529–1537.

    Article  CAS  Google Scholar 

  • Yen HT, Chiang LC, Wen KH, Tsai CC, Yu CL, Yu HS . (1996). The expression of cytokines by an established basal cell carcinoma cell line (BCC-1/KMC) compared with cultured normal keratinocytes. Arch Dermatol Res 288: 157–161.

    Article  CAS  Google Scholar 

  • Yucel T, Mutnal A, Fay K, Fligiel SEG, Wang T, Johnson T et al. (2005). Matrix metalloproteinase expression in basal cell carcinoma: relationship between enzyme profile and collagen fragmentation pattern. Exp Mol Pathol 79: 151–160.

    Article  CAS  Google Scholar 

  • Zhang J, Sarkar S, Yong VW . (2005). The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis 26: 2069–2077.

    Article  CAS  Google Scholar 

  • Zhang S, Liu J, MacGibbon G, Dragunow M, Cooper GJS . (2002). Increased expression and activation of c-Jun contributes to human amylin-induced apoptosis in pancreatic islet β-cells. J Mol Biol 324: 271–285.

    Article  CAS  Google Scholar 

  • Zhou Y, Larsen PH, Hao C, Yong VW . (2002). CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277: 49481–49487.

    Article  CAS  Google Scholar 

  • Zlotnik A, Yoshie O . (2000). Chemokines: a new classification system and their role in immunity. Immunity 12: 121–127.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Din-Lii Lin from TaiGen Biotechnology Company (Taipei, Taiwan) for providing pCMV-CXCR4 and AMD 3100. This work was supported by grants to S-H Jee from the National Science Council of Taiwan (NSC 93-2314-B-002-072, NSC 95-2314-B-002-001) and to C-Y Chu from National Taiwan University Hospital (NTUH 93N016, NTUH 94N027, NTUH 95M06) and the National Science Council of Taiwan (NSC 95-2314-B-002-129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-L Kuo.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CY., Cha, ST., Chang, CC. et al. Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1α-directed invasion of human basal cell carcinoma cells. Oncogene 26, 2491–2501 (2007). https://doi.org/10.1038/sj.onc.1210040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210040

Keywords

This article is cited by

Search

Quick links