Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of an histone H3 acetylated/K4-methylated-bound intragenic enhancer regulatory for urokinase receptor expression

Abstract

The transcriptionally regulated urokinase-type plasminogen activator receptor (u-PAR) contributes to cancer progression. Although previous studies have identified multiple 5′ regulatory elements, these cis motifs cannot fully account for u-PAR expression prompting a search for hitherto uncharacterized regulatory elements. DNase I hypersensitivity and chromatin immunoprecipitation assays using u-PAR-expressing colon cancer cells indicated a hypersensitive region (+665/+2068) in intron 1 enriched with acetylated histone 3 (H3) and H3 methylated at lysine 4, markers of regulatory regions. The +665/+2068 region increased transcription from a u-PAR-promoter in an orientation- and distance-independent manner fulfilling the criteria of an enhancer. Optimal stimulation of the u-PAR promoter by phorbol ester required this enhancer. Systematic truncations combined with DNase I footprinting revealed two protected regions (+1060/+1099 and +1123/+1134) with deletion of the latter practically abolishing enhancer activity. The +1123/+1134 region harbored non-consensus activator protein-1 and Ets1 binding sites bound with c-Jun (and/or the related JunD/JunB) and c-Fos (and/or the related FosB/Fra-1/Fra-2) as revealed with chromatin immunoprecipitation. Further, nuclear extract from resected colon cancers showed elevated protein binding to a +1123/+1134-spanning probe coordinate with elevated u-PAR protein. Thus, we have defined a novel intragenic enhancer in the u-PAR gene required for constitutive and inducible expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L . (2001). Urokinase receptor and fibronectin regulate the ERK to p 38 Activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12: 863–879.

    Article  CAS  Google Scholar 

  • Ahnen DJ, Feigl P, Quan G, Fenoglio-Preiser C, Lovato LC, Bunn PA et al. (1998). Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a southwest oncology group study. Cancer Res 58: 1149–1158.

    CAS  PubMed  Google Scholar 

  • Allgayer H, Wang H, Gallick GE, Crabtree A, Mazar A, Jones T et al. (1999a). Transcriptional induction of the urokinase receptor gene by a constitutively active Src. Requirement of an upstream motif (−152/−135) bound with Sp1. J Biol Chem 274: 18428–18445.

    Article  CAS  Google Scholar 

  • Allgayer H, Wang H, Shirasawa H, Sasazuki T, Boyd D . (1999b). Targeted disruption of the K-Ras oncogene in invasive colon cancer downregulates urokinase receptor expression and plasminogene dependent proteolysis. Br J Cancer 80: 1884–1891.

    Article  CAS  Google Scholar 

  • Allgayer H, Wang H, Wang Y, Heiss MM, Bauer R, Nyormoi O et al. (1999c). Transactivation of the urokinase-type plasminogen activator receptor gene through a novel promoter motif bound with an activator protein-2α-related factor. J Biol Chem 274: 4702–4714.

    Article  CAS  Google Scholar 

  • Bass R, Werner F, Odintsova E, Sugiura T, Berditchevski F, Ellis V . (2005). Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J Biol Chem 280: 14811–14818.

    Article  CAS  Google Scholar 

  • Bos JL . (1989). ras oncognees in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  Google Scholar 

  • Casey JR, Petranka JG, Kottra J, Fleenor DE, Rosse WF . (1994). The structure of the urokinase-type plasminogen activator receptor gene. Blood 84: 1151–1156.

    CAS  PubMed  Google Scholar 

  • Delong CJ, Smith WL . (2005). An intronic enhancer regulates cyclooxygenase-1 gene expression. Biochem Biophys Res Commun 338: 53–61.

    Article  CAS  Google Scholar 

  • Galang CK, Muller WJ, Foos G, Oshima RG, Hauser CA . (2004). Changes in the expression of many Ets family transcription factors and of potential target genes in normal mammary tissue and tumors. J Biol Chem 279: 11281–11292.

    Article  CAS  Google Scholar 

  • Ganesh S, Sier CFM, Heerding MM, Griffioen G, Lamers CBH, Verspaget HW . (1994). Urokinase receptor and colorectal cancer survival. Lancet 344: 401–402.

    Article  CAS  Google Scholar 

  • Gum R, Wang H, Lengyel E, Juarez J, Boyd D . (1997). Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14: 1481–1493.

    Article  CAS  Google Scholar 

  • Hapke S, Gawaz M, Dehne K, Kohler J, Marshall JF, Graeff H et al. (2001). 3A-integrin downregulates the urokinase-type plasminogen activator receptor (u-PAR) through a PEA3/ets transcriptional silencing element in the u-PAR promoter. Mol Cell Biol 21: 2118–2132.

    Article  CAS  Google Scholar 

  • Ibanez-Tallon I, Caretti G, Blasi F, Crippa MP . (1999). In vivo analysis of the state o the human uPA enhancer following stimulation by TPA. Oncogene 18: 2836–2845.

    Article  CAS  Google Scholar 

  • Ito T, Yamauchi M, Nishina H, Yamamichi N, Murakami MS, Iba H . (2001). Identification of SWI-SNF complex subunit BAF60a asa determinant of the transactivation potential of Fos/Jun dimers. J Biol Chem 276: 2852–2857.

    Article  CAS  Google Scholar 

  • Jeffers M, Rong S, Vande Woude GF . (1996). Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-Met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 16: 1115–1125.

    Article  CAS  Google Scholar 

  • Jo M, Thomas KS, O'Donnell DM, Gonias S . (2003). Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor. J Biol Chem 278: 1642–1646.

    Article  CAS  Google Scholar 

  • Jones LG, Ella KM, Bradshaw CD, Gause KC, Dey M, Wisehart-Johnson AE et al. (1994). Activations of mitogen-activated protein kinases and phospholipase D in A7r5 vascular smooth muscle cells. J Biol Chem 269: 23790–23799.

    CAS  PubMed  Google Scholar 

  • Kleinjan DA, van Heyningen V . (2005). Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76: 8–32.

    Article  CAS  Google Scholar 

  • Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M et al. (2003). Synergistic down-regulation of urokinase activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 63: 2454–2461.

    CAS  PubMed  Google Scholar 

  • Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY et al. (1998). Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interactions with the c-Jun and c-Fos subunits. J Biol Chem 273: 16651–16654.

    Article  CAS  Google Scholar 

  • Lengyel E, Wang H, Gum R, Simon C, Wang Y, Boyd D . (1997). Elevated urokinase-type plasminogen activator receptor expression in a colon cancer cell line is due to a constitutively activated extracellular signal-regulated kinase-1-dependent signaling cascade. Oncogene 14: 2563–2573.

    Article  CAS  Google Scholar 

  • Lengyel E, Wang H, Stepp E, Juarez J, Doe W, Pfarr CM et al. (1996). Requirement of an upstream AP-1 motif for the constitutive and phorbol ester-inducible expression of the urokinase-type plasminogen activator receptor gene. J Biol Chem 271: 23176–23184.

    Article  CAS  Google Scholar 

  • Liang G, Lin JCY, Wei V, Yoo C, Cheng JC, Nguyen CT et al. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sties in the human genome. Proc Natl Acad Sci USA 101: 7357–7362.

    Article  CAS  Google Scholar 

  • Licato LL, Keku TO, Wurzelmann JI, Murray SC, Woosley JT, Sandler RS et al. (1997). In vivo activation of mitogen-activated protein kinases in rat intestinal neoplasia. Gastroenterology 113: 1589–1598.

    Article  CAS  Google Scholar 

  • Lin CY, Chen YH, Lee HC, Tsai HJ . (2004). Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334: 63–72.

    Article  CAS  Google Scholar 

  • Liu D, Aguirre-Ghiso JA, Estrada Y, Ossowski L . (2002). EGFR is a transducer of the urokinase receptor inititiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1: 445–457.

    Article  CAS  Google Scholar 

  • Lund LR, Ellis V, Ronne E, Pyke C, Dano K . (1995). Transcriptional and post-transcriptional regulation of the receptor for urokinase-type plasminogen activator by cytokines and tumor promoters in the human lung carcinoma cell line A549. Biochem J 310: 345–352.

    Article  CAS  Google Scholar 

  • Ma Z, Shah RC, Chang MJ, Benveniste EN . (2004). Coordination of cell signaling, chromatin remodeling, histone modifications, and regulator recruitment in human matrix metalloproteinase 9 gene transcription. Mol Cell Biol 24: 5496–5509.

    Article  CAS  Google Scholar 

  • Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA . (2001). Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci USA 98: 10284–10289.

    Article  CAS  Google Scholar 

  • Mann B, Gelos M, Wiedow A, Hanski ML, Gratchev A, Ilyas M et al. (1999). Target genes of β−catenin-T cell factor/lymphoid-enhancer factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96: 1603–1608.

    Article  CAS  Google Scholar 

  • McCawley LJ, Li S, Wattenberg EV, Hudson LG . (1999). Sustained activation of the mitogen-activated protein kinase pathway. J Biol Chem 274: 4347–4353.

    Article  CAS  Google Scholar 

  • Nair R, Wang H, Jamaluddin MdS, Fokt I, Priebe W, Boyd DD . (2005). A bisanthracycline (WP631) represses u-PAR gene expression and cell migration of RKO colon cancer cells by interfering with transcription factors binding to a chromatin-accessible -148/1-24 promoter region. Oncol Res 15: 265–279.

    Article  CAS  Google Scholar 

  • Nestl A, Von Stein OD, Zatloukal K, Thies W-G, Herrlich P, Hofmann M et al. (2001). Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61: 1569–1577.

    CAS  PubMed  Google Scholar 

  • Noti JD, Reinemann BC, Petrus MN . (1996). Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription. Mol Cell Biol 16: 2940–2950.

    Article  CAS  Google Scholar 

  • Nykjaer A, Conese M, Cremona O, Gliemann J, Blasi F . (1997). Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. Eur Mol Biol Organ 16: 2610–2620.

    Article  CAS  Google Scholar 

  • Palii SS, Chen H, Kilberg MS . (2004). Transcriptional control of the human sodium-coupled neutral amino acid transporter system A gene by amino acid availability is mediated by an intronic element. J Biol Chem 279: 3463–3471.

    Article  CAS  Google Scholar 

  • Pyke C, Kristensen P, Ralfkiaer E, Grondahl-Hansen J, Eirksen J, Blasi F et al. (1991). Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Pathol 138: 1059–1067.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbani SA, Gladu J . (2002). Urokinase receptor antibody can reduce tumor volume and detect the presence of occult tumor metastases in vivo. Cancer Res 62: 2390–2397.

    CAS  PubMed  Google Scholar 

  • Radtke F, Clevers H . (2005). Self-renewal and cancer of the gut: two sides of a coin. Science 307: 1904–1909.

    Article  CAS  Google Scholar 

  • Reiter LS, Kruithof EK, Cajot J-F, Sordat B . (1993). The role of the urokinase receptor in extracellular matirx degradation by HT29 human colon carcinoma cells. Int J Cancer 53: 444–450.

    Article  CAS  Google Scholar 

  • Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M et al. (2002). The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactin receptor FPRL1/LXA4R. Proc Natl Acad Sci USA 99: 1359–1364.

    Article  CAS  Google Scholar 

  • Robbins DJ, Cheng M, Zhen E, Vanderbilt CA, Feig LA, Cobb MH . (1992). Evidence for a ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc Natl Acad Sci USA 89: 6924–6928.

    Article  CAS  Google Scholar 

  • Russo P, Malacarne D, Falugi C, Trombino S, O'Connor PM . (2002). RPR-115135, a farnesyltransferase inhibitor, increases 5-FU cytotoxicity in 10 human colon cancer cell lines: role of p53. Int J Cancer 100: 266–275.

    Article  CAS  Google Scholar 

  • Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, Diehn M et al. (2003). Gene expression patterns in ovarian carcinomas. Mol Biol Cell 14: 4376–4386.

    Article  CAS  Google Scholar 

  • Schewe D, Leupold JH, Boyd DD, Lengyel E, Gruetzner KU, Schildberg FW et al. (2003). Tumor-specific transcription factor binding to an AP-2/Sp1 promoter element of the urokinase-receptor u-PAR promoter in a first large series of resected gastrointestinal cancers. Clin Cancer Res 9: 2267–2276.

    CAS  PubMed  Google Scholar 

  • Shanahan F, Seghezzi W, Parry D, Mahony D, Lees E . (1999). Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol Cell Biol 19: 1460–1469.

    Article  CAS  Google Scholar 

  • Shetty S . (2005). Regulation of urokinase receptor mRNA stability by hnRNP C in lung epithelial cells. Mol Cell Biochem 272: 107–118.

    Article  CAS  Google Scholar 

  • Shetty S, Kumar A, Idell S . (1997). Posttranscriptional regulation of urokinase receptor mRNA: identification of a novel urokinase receptor mRNA binding protein in human mesothelioma cells. Mol Cell Biol 17: 1075–1083.

    Article  CAS  Google Scholar 

  • Shields JM, Yang VW . (1998). Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor. Nucleic Acids Res 26: 796–802.

    Article  CAS  Google Scholar 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260: 85–88.

    Article  CAS  Google Scholar 

  • Shitoh K, Furukawa T, Kojima M, Knoishi F, Miyaki M, Tsukamoto T et al. (2001). Frequent activation of the b-catenin-Tcf signaling pathway in nonfamilial colorectal carcinomas with microsatellite instabilty. Genes Chromosomes Cancer 30: 32–37.

    Article  CAS  Google Scholar 

  • Soravia E, Grebe A, De Luca P, Helin K, Suh TT, Degen JL et al. (1995). A conserved TATA-less proximal promoter drives basal transcription from the urokinase-type plasminogen activator receptor gene. Blood 86: 624–635.

    CAS  PubMed  Google Scholar 

  • Sozeri O, Vollmer K, Liyanage M, Frith D, Kour G, Mark GE et al. (1992). Activation of the c-raf protein kinase by protein kinase C phosphorylation. Oncogene 7: 2259–2262.

    CAS  PubMed  Google Scholar 

  • Stephens R, Nielsem HJ, Christensen IJ, Thorlacius-Ussing O, Sorensen S, Dano K et al. (1999). Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst 91: 869–874.

    Article  CAS  Google Scholar 

  • Suzuki S, Hayashi Y, Wang Y, Nakamura T, Morita Y, Kawasaki K et al. (1999). Urokinase type plasminogen activator receptor expression in colorectal neoplasias. Gut 43: 798–805.

    Article  Google Scholar 

  • Trisciuoglio D, Iervolino A, Candiloro A, Fibbi G, Fanciulli M, Zangemeister-Wittke U et al. (2004). bcl-2 induction of urokinase plasminogen activator receptor expression in human cancer cells through Sp1 activation. J Biol Chem 279: 6737–6745.

    Article  CAS  Google Scholar 

  • Wang Y, Dang J, Wang H, Allgayer H, Murrell GA, Boyd D . (2000). Identification of a novel nuclear factor-kappa B sequence involved in expression of the urokinase-type plasminogen activator receptor. Eur J Biochem 267: 3248–3254.

    Article  CAS  Google Scholar 

  • Wang H, Skibber J, Juarez J, Boyd D . (1994). Transcriptional activation of the urokinase receptor gene in invasive colon cancer. Int J Cancer 58: 650–657.

    Article  CAS  Google Scholar 

  • Wang H, Yang L, Jamaluddin MdS, Boyd DD . (2004). The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem 279: 22674–22683.

    Article  CAS  Google Scholar 

  • Wei Y, Lukashev M, Simon DI, Bodary SC, Rosenberg S, Doyle MV et al. (1996). Regulation of integrin function by the urokinase receptor. Science 273: 1551–1555.

    Article  CAS  Google Scholar 

  • Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA . (1994). Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269: 32380–32388.

    CAS  PubMed  Google Scholar 

  • Yan C, Wang H, Toh Y, Boyd DD . (2003). Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. J Biol Chem 278: 2309–2316.

    Article  CAS  Google Scholar 

  • Yang B-S, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ et al. (1996). Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol 16: 538–547.

    Article  CAS  Google Scholar 

  • Yebra M, Parry GCN, Stromblad S, Mackman N, Rosenberg S, Mueller M et al. (1996). Requirement of receptor-bound urokinase-type plasminogen activator for integrin αvβ5-directed cell migration. J Biol Chem 271: 29393–29399.

    Article  CAS  Google Scholar 

  • Young MR, Nair R, Bucheimer N, Tulsian P, Brown N, Chapp C et al. (2002). Transactivation of Fra-1 and consequent activation of AP-1 occur extracellular signal-regulated kinase dependently. Mol Cell Biol 22: 587–598.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (R01 CA58311 and DE10845) to DDB. We are grateful to Dr Chichuan Tseng for the KLF4 expression construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yan, C., Asangani, I. et al. Identification of an histone H3 acetylated/K4-methylated-bound intragenic enhancer regulatory for urokinase receptor expression. Oncogene 26, 2058–2070 (2007). https://doi.org/10.1038/sj.onc.1210003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210003

Keywords

This article is cited by

Search

Quick links