Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells

Abstract

Levels of cyclins and cyclin-dependent kinase (Cdk) inhibitors are tightly controlled during normal cell proliferation and are frequently dysregulated in cancerous cells. In melanoma, cyclin D1 is highly expressed and downregulation of the Cdk inhibitor, p27Kip1, is associated with a poor prognosis. Mutant B-RAF is frequently expressed in melanoma and overrides growth factor and matrix adhesion control of cyclin D1 and p27Kip1 levels in human melanocytes. Here, we demonstrate that p27Kip1 expression is regulated by multiple mechanisms in melanoma cells. B-RAF regulates p27Kip1 mRNA abundance independently of cyclin D1. Additionally, B-RAF and cyclin D1 control the levels of S-phase kinase-associated protein 2 (Skp2) that directs ubiquitin-mediated proteolysis of p27Kip1. The cofactor for Skp2, Cdc kinase subunit 1 (Cks1) controls levels of Skp2 in melanoma cells and acts jointly with Skp2 to regulate p27Kip1 levels. Importantly, expression of Cks1 is regulated by B-RAF and cyclin D1 at the mRNA level. Reduced Cks1 or Skp2 expression and enhanced p27Kip1 levels inhibit melanoma cell growth. In summary, p27Kip1 expression in melanoma is regulated by B-RAF at the mRNA level, and via B-RAF and cyclin D1 control of Cks1/Skp2-mediated proteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

Cdk:

cyclin-dependent kinases

Cks1:

cdc kinase subunit 1

NHEM:

normal human epidermal melanocytes

qRT–PCR:

real-time quantitative reverse transcriptase–polymerase chain reaction

Rb:

retinoblastoma

RNAi:

RNA interference

SCF:

Skp1/Cul1/F-box

Skp2:

S-phase kinase-associated protein 2

References

  • Assoian RK, Schwartz MA . (2001). Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev 11: 48–53.

    Article  CAS  Google Scholar 

  • Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M . (2004). Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428: 190–193.

    Article  CAS  Google Scholar 

  • Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K, Aplin AE . (2005). Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 12: 3459–3471.

    Article  Google Scholar 

  • Bond M, Sala-Newby GB, Newby AC . (2004). Focal adhesion kinase (FAK)-dependent regulation of S-phase kinase-associated protein-2 (Skp-2) stability: a novel mechanism regulating smooth muscle cell proliferation. J Biol Chem 279: 37304–37310.

    Article  CAS  Google Scholar 

  • Brandeis M, Hunt T . (1996). The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. EMBO J 15: 5280–5289.

    Article  CAS  Google Scholar 

  • Calipel A, Lefevre G, Pouponnot C, Mouriaux F, Eychene A, Mascarelli F . (2003). Mutation of B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the MEK/ERK pathway. J Biol Chem 278: 42409–42418.

    Article  CAS  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M . (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1: 193–199.

    Article  CAS  Google Scholar 

  • Carrano AC, Pagano M . (2001). Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol 153: 1381–1390.

    Article  CAS  Google Scholar 

  • Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C et al. (1997). Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 3: 227–230.

    Article  CAS  Google Scholar 

  • Collisson EA, De A, Suzuki H, Gambhir SS, Kolodney MS . (2003). Treatment of metastatic melanoma with an orally available inhibitor of the Ras-Raf-MAPK cascade. Cancer Res 63: 5669–5673.

    CAS  PubMed  Google Scholar 

  • Conner SR, Scott G, Aplin AE . (2003). Adhesion-dependent activation of the ERK1/2 cascade is by-passed in melanoma cells. J Biol Chem 278: 34548–34554.

    Article  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Delmas C, Aragou N, Poussard S, Cottin P, Darbon JM, Manenti S . (2003). MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. J Biol Chem 278: 12443–12451.

    Article  CAS  Google Scholar 

  • Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ . (1998). The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396: 177–180.

    Article  CAS  Google Scholar 

  • Florenes VA, Mælandsmo GM, Kerbel RS, Slingerland JM, Nesland JM, Holm R . (1998). Protein expression of the cell-cycle inhibitor p27Kip1 in malignant melanoma: inverse correlation with disease-free survival. Am J Pathol 153: 305–312.

    Article  CAS  Google Scholar 

  • Galan JM, Peter M . (1999). Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sci USA 96: 9124–9129.

    Article  CAS  Google Scholar 

  • Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M et al. (2001). The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3: 321–324.

    Article  CAS  Google Scholar 

  • Garriga J, Bhattacharya S, Calbo J, Marshall RM, Truongcao M, Haines DS et al. (2003). CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol 23: 5165–5173.

    Article  CAS  Google Scholar 

  • Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J et al. (2001). Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 98: 5043–5048.

    Article  CAS  Google Scholar 

  • Gysin S, Lee S-H, Dean NM, McMahon M . (2005). Pharmacologic inhibition of RAF->MEK->ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res 65: 4870–4880.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M et al. (2005). Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 20: 9–19.

    Article  CAS  Google Scholar 

  • Harbour JW, Dean DC . (2000). The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14: 2393–2409.

    Article  CAS  Google Scholar 

  • Henriet P, Zhong ZD, Brooks PC, Weinberg KI, DeClerck YA . (2000). Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc Natl Acad Sci USA 97: 10026–10031.

    Article  CAS  Google Scholar 

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA . (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 63: 5198–5202.

    CAS  PubMed  Google Scholar 

  • Inui N, Kitagawa K, Miwa S, Hattori T, Chida K, Nakamura H et al. (2003). High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Comm 303: 978–984.

    Article  CAS  Google Scholar 

  • Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI . (2002). Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem 277: 14355–14358.

    Article  CAS  Google Scholar 

  • Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, Pagano M et al. (2004). An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell 16: 47–58.

    Article  CAS  Google Scholar 

  • Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H et al. (2003). Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci USA 100: 10231–10236.

    Article  CAS  Google Scholar 

  • Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S et al. (2004). Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6: 1229–1235.

    Article  CAS  Google Scholar 

  • Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F et al. (2004). B-RAF is a therapeutic target in melanoma. Oncogene 23: 6292–6298.

    Article  CAS  Google Scholar 

  • Katagiri Y, Hozumi Y, Kondo S . (2006). Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J Dermatol Sci 42: 215–224.

    Article  CAS  Google Scholar 

  • Kawana H, Tamaru J, Tanaka T, Hirai A, Saito Y, Kitagawa M et al. (1998). Role of p27Kip1 and cyclin-dependent kinase 2 in the proliferation of non-small cell lung cancer. Am J Pathol 153: 505–513.

    Article  CAS  Google Scholar 

  • Kossatz U, Dietrich N, Zender L, Buer J, Manns MP, Malek NP . (2004). Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev 18: 2602–2607.

    Article  CAS  Google Scholar 

  • Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G et al. (2001). Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA 98: 2515–2520.

    Article  CAS  Google Scholar 

  • Li Q, Murphy M, Ross J, Sheehan C, Carlson JA . (2004). Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J Cutan Pathol 31: 633–642.

    Article  Google Scholar 

  • Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF et al. (1997). Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3: 231–234.

    Article  CAS  Google Scholar 

  • Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T et al. (2003). Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95: 1878–1890.

    Article  CAS  Google Scholar 

  • Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM . (2001). A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413: 323–327.

    Article  CAS  Google Scholar 

  • Mirza AM, Gysin S, Malek N, Nakayama K-I, Roberts JM, McMahon M . (2004). Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 24: 10868–10881.

    Article  CAS  Google Scholar 

  • Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A et al. (1999). Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 13: 1181–1189.

    Article  CAS  Google Scholar 

  • Mori M, Mimori K, Shiraishi T, Tanaka S, Ueo H, Sugimachi K et al. (1997). p27 expression and gastric carcinoma. Nat Med 3: 593.

    Article  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K et al. (2000). Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19: 2069–2081.

    Article  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S et al. (2004). Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6: 661–672.

    Article  CAS  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29: e45.

    Article  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L et al. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771.

    Article  CAS  Google Scholar 

  • Rodier G, Makris C, Coulombe P, Scime A, Nakayama K, Nakayama KI et al. (2005). p107 inhibits G1 to S phase progression by down-regulating expression of the F-box protein Skp2. J Cell Biol 168: 55–66.

    Article  CAS  Google Scholar 

  • Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL et al. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63: 756–759.

    CAS  PubMed  Google Scholar 

  • Sauter ER, Yeo U-C, von Stemm A, Zhu W, Litwin S, Tichansky DS et al. (2002). Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62: 3200–3206.

    CAS  PubMed  Google Scholar 

  • Shapira M, Ben-Izhak O, Bishara B, Futerman B, Minkov I, Krausz MM et al. (2004). Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100: 1615–1621.

    Article  CAS  Google Scholar 

  • Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . (2005). Mutant V599E B-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65: 2412–2421.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  Google Scholar 

  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . (2003). Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834–839.

    Article  CAS  Google Scholar 

  • Slingerland J, Pagano M . (2000). Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183: 10–17.

    Article  CAS  Google Scholar 

  • Spruck C, Strohmaier H, Watson M, Smith APL, Ryan A, Krek W et al. (2001). A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol Cell 7: 639–650.

    Article  CAS  Google Scholar 

  • Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 64: 7002–7010.

    Article  CAS  Google Scholar 

  • Sumimoto H, Hirata K, Yamagata S, Miyoshi H, Miyagishi M, Taira K et al. (2006). Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int J Cancer 118: 472–476.

    Article  CAS  Google Scholar 

  • Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al. (2004). Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23: 6031–6039.

    Article  CAS  Google Scholar 

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U et al. (1999). p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1: 207–214.

    Article  CAS  Google Scholar 

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H . (1999). p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9: 661–664.

    Article  CAS  Google Scholar 

  • Vlach J, Hennecke S, Amati B . (1997). Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16: 5334–5344.

    Article  CAS  Google Scholar 

  • Wang W, Ungermannova D, Jin J, Harper JW, Liu X . (2004). Negative regulation of SCFSkp2 ubiquitin ligase by TGF-beta signaling. Oncogene 23: 1064–1075.

    Article  CAS  Google Scholar 

  • Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin Jr WG . (2004). Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428: 194–198.

    Article  CAS  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004a). The Raf proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  Google Scholar 

  • Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D et al. (2004b). V599EB-RAF is an oncogene in melanocytes. Cancer Res 64: 2338–2342.

    Article  CAS  Google Scholar 

  • Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F et al. (2000). The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J 19: 5362–5375.

    Article  CAS  Google Scholar 

  • Woenckhaus C, Maile S, Uffmann S, Bansemir M, Dittberner T, Poetsch M et al. (2005). Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol Histopathol 20: 501–508.

    CAS  PubMed  Google Scholar 

  • Zhu XH, Nguyen H, Halicka HD, Traganos F, Koff A . (2004). Noncatalytic requirement for cyclin A-cdk2 in p27 turnover. Mol Cell Biol 24: 6058–6066.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The help of the following researchers/facilities is gratefully acknowledged: The Birth Place at Albany Medical Center provided research samples; Dr Meenhard Herlyn for cell lines; Dr Mark Bond donated the Skp2 adenoviruses; Dr Kevin Pumiglia and Patrick Bryant assisted with the adenoviral amplification and purification; Drs Nakayama and Matsumoto provided the p27Kip1(T187A) cDNA; and Dr Thomas Friedrich provided helpful comments on the work. The Aplin lab is supported by National Institutes of Health Grant GM067893. The authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A E Aplin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, K., Hu, R., Spofford, L. et al. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene 26, 1056–1066 (2007). https://doi.org/10.1038/sj.onc.1209861

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209861

Keywords

This article is cited by

Search

Quick links