Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bak functionally complements for loss of Bax during p14ARF-induced mitochondrial apoptosis in human cancer cells

Abstract

In contrast to the initial notion that the biological activity of p14ARF strictly depends on a functional mdm-2/p53 signaling axis, we recently demonstrated that p14ARF mediates apoptosis in a p53/Bax-independent manner. Here, we show that p14ARF induces breakdown of the mitochondrial membrane potential and cytochrome c release before triggering caspase-9- and caspase-3/7-like activities in p53/Bax-deficient DU145 prostate cancer cells expressing wild-type Bak. Re-expression of Bax in these cells failed to further enhance p14ARF-induced apoptosis, suggesting that p14ARF-induced apoptosis primarily depends on Bak but not Bax in these cells. To further define the role of Bak and Bax in p14ARF-induced mitochondrial apoptosis, we employed short interference RNA for the knockdown of bak in isogeneic, p53 wild-type HCT116 colon cancer cells either proficient or deficient for Bax. There, combined loss of Bax and Bak attenuated p14ARF-induced apoptosis whereas single loss of Bax or Bak was only marginally effective, as in the case of DU145. Notably, HCT116 cells deficient for Bax and Bak failed to release cytochrome c and showed attenuated activation of caspase-9 (LEHDase) and caspase-3/caspase-7 (DEVDase) upon p14ARF expression. These data indicate that p14ARF triggers apoptosis via a Bax/Bak-dependent pathway in p53-proficient HCT116, whereas Bax is dispensable in p53-deficient DU145 cells. Nevertheless, a substantial proportion of p14ARF-induced cell death proceeds in a Bax/Bak-independent manner. This is also the case for inhibition of clonogenic growth that occurs, at least in part, through an entirely Bax/Bak-independent mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Cartron PF, Juin P, Oliver L, Martin S, Meflah K and Vallette FM . (2003). Mol Cell Biol, 23, 4701–4712.

  • Chandra D, Choy G, Daniel PT and Tang DG . (2005). J Biol Chem, 280, 19051–19061.

  • Chen D, Kon N, Li M, Zhang W, Qin J and Gu W . (2005a). Cell, 121, 1071–1083.

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI and Hinds MG et al. (2005b). Mol Cell, 17, 393–403.

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ and Korsmeyer SJ . (2003). Science, 301, 513–517.

  • Daniel PT, Schulze-Osthoff K, Belka C and Güner D . (2003). Essays Biochem, 39, 73–88.

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G and Samuelson AV et al. (1998). Genes Dev, 12, 2434–2442.

  • Eymin B, Karayan L, Seite P, Brambilla C, Brambilla E and Larsen CJ et al. (2001). Oncogene, 20, 1033–1041.

  • Eymin B, Leduc C, Coll JL, Brambilla E and Gazzeri S . (2003). Oncogene, 22, 1822–1835.

  • Fatyol K and Szalay AA . (2001). J Biol Chem, 276, 28421–28429.

  • Gelinas C and White E . (2005). Genes Dev, 19, 1263–1268.

  • Gillissen B, Essmann F, Graupner V, Starck L, Radetzki S and Dörken B et al. (2003). EMBO J, 22, 3580–3590.

  • Groth A, Weber JD, Willumsen BM, Sherr CJ and Roussel MF . (2000). J Biol Chem, 275, 27473–27480.

  • Hemmati PG, Gillissen B, von Haefen C, Wendt J, Starck L and Güner D et al. (2002). Oncogene, 21, 3149–3161.

  • Hemmati PG, Normand G, Verdoodt B, von Haefen C, Hasenjager A and Güner D et al. (2005). Oncogene, 24, 4114–4128.

  • Korgaonkar C, Zhao L, Modestou M and Quelle DE . (2002). Mol Cell Biol, 22, 196–206.

  • Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC and Shiels HA et al. (2000). Mol Cell, 6, 1389–1399.

  • Lowe SW and Sherr CJ . (2003). Curr Opin Genet Dev, 13, 77–83.

  • Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD and Rollins BJ et al. (1995). Cancer Res, 55, 2995–2997.

  • Normand G, Hemmati PG, Verdoodt B, von Haefen C, Wendt J and Güner D et al. (2005). J Biol Chem, 280, 7118–7130.

  • Palmero I, Pantoja C and Serrano M . (1998). Nature, 395, 125–126.

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K and Hann SR . (2004). Nature, 431, 712–717.

  • Quelle DE, Zindy F, Ashmun RA and Sherr CJ . (1995). Cell, 83, 993–1000.

  • Rocha S, Campbell KJ and Perkins ND . (2003). Mol Cell, 12, 15–25.

  • Rocha S, Garrett MD, Campbell KJ, Schumm K and Perkins ND . (2005). EMBO J, 24, 1157–1169.

  • Rocha S and Perkins ND . (2005). Cell Cycle, 4, 756–759.

  • Scholz C, Richter A, Lehmann M, Schulze-Osthoff K, Dorken B and Daniel PT . (2005a). Oncogene, 24, 7031–7042.

  • Scholz C, Wieder T, Starck L, Essmann F, Schulze-Osthoff K and Dorken B et al. (2005b). Oncogene, 24, 1904–1913.

  • Sharpless NE and DePinho RA . (1999). Curr Opin Genet Dev, 9, 22–30.

  • Sherr CJ . (2001). Nat Rev Mol Cell Biol, 2, 731–737.

  • Sherr CJ . (2004). Cell, 116, 235–246.

  • Shmueli A and Oren M . (2005). Cell, 121, 963–965.

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M and Brookes S et al. (1998). EMBO J, 17, 5001–5014.

  • Suzuki H, Kurita M, Mizumoto K, Nishimoto I, Ogata E and Matsuoka M . (2003). Biochem Biophys Res Commun, 312, 1273–1277.

  • Theodorakis P, Lomonosova E and Chinnadurai G . (2002). Cancer Res, 62, 3373–3376.

  • von Haefen C, Gillissen B, Hemmati PG, Wendt J, Güner D and Mrozek A et al. (2004). Oncogene, 23, 8320–8332.

  • von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B and Daniel PT . (2003). Oncogene, 22, 2236–2247.

  • von Haefen C, Wieder T, Gillissen B, Starck L, Graupner V and Dörken B et al. (2002). Oncogene, 21, 4009–4019.

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G and Roussel MF et al. (2000). Genes Dev, 14, 2358–2365.

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ and Bar-Sagi D . (1999). Nat Cell Biol, 1, 20–26.

  • Wendt J, von Haefen C, Hemmati P, Belka C, Dörken B and Daniel PT . (2005). Oncogene, 24, 4052–4064.

  • Willis SN, Chen L, Dewson G, Wei A, Naik E and Fletcher JI et al. (2005). Genes Dev, 19, 1294–1305.

  • Yakovlev AG, Di Giovanni S, Wang G, Liu W, Stoica B and Faden AI . (2004). J Biol Chem, 279, 28367–28374.

  • Yarbrough WG, Bessho M, Zanation A, Bisi JE and Xiong Y . (2002). Cancer Res, 62, 1171–1177.

  • Yu J, Wang Z, Kinzler KW, Vogelstein B and Zhang L . (2003). Proc Natl Acad Sci USA, 100, 1931–1936.

  • Zhang L, Yu J, Park BH, Kinzler KW and Vogelstein B . (2000). Science, 290, 989–992.

  • Zhong Q, Gao W, Du F and Wang X . (2005). Cell, 121, 1085–1095.

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL and Sherr CJ et al. (1998). Genes Dev, 12, 2424–2433.

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ and Thompson CB . (2004). Genes Dev, 18, 1272–1282.

Download references

Acknowledgements

This work was supported by the Deutsche Krebshilfe Grant 10-2088-Da3 to PTD and PGH. We thank Ms Antje Richter and Ms Anja Richter for superb technical assistance. HCT116-Bax+/+ and HCT116 Bax−/− cells were generously provided by Dr Bert Vogelstein (Johns Hopkins Cancer Center, Baltimore, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P T Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmati, P., Güner, D., Gillissen, B. et al. Bak functionally complements for loss of Bax during p14ARF-induced mitochondrial apoptosis in human cancer cells. Oncogene 25, 6582–6594 (2006). https://doi.org/10.1038/sj.onc.1209668

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209668

Keywords

This article is cited by

Search

Quick links