Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Short-term induction and long-term suppression of HPV16 oncogene silencing by RNA interference in cervical cancer cells

Abstract

RNA interference-mediated gene silencing has the potential to block gene expression. A synthetic double-stranded small interfering RNA (siRNA) based on a sequence motif of 21 nucleotides from human papillomavirus 16 (HPV16) E6E7 bicistronic RNA was found to be a potent siRNA that suppresses expression of both the E6 and E7 oncogenes in HPV16+ CaSki and SiHa cells. When stably expressed as a short hairpin RNA in these cells, however, siRNA silencing of E6 and E7 expression was efficient only at early cell passages, but became inefficient with increased cell passages despite the continued expression of the siRNA at the same level. The loss of the siRNA function was duplicable in stable p53 siRNA cells, but not in stable lamin A/C siRNA cells, suggesting that it is gene selective. The cells resistant to siRNA function retained normal siRNA processing, duplex unwinding and degradation of the unwound sense strand and RNA-induced silencing complex formation, suggesting that loss of the siRNA function occurred at a later step. Surprisingly, the siRNA-resistant cells were found to express notably a cytoplasmic protein of 50 kDa that specifically and characteristically interacted with the unwound, antisense strand E7 siRNA. Altogether, our data indicate that a potent siRNA targeting to an essential or regulatory gene might induce a cell to develop siRNA-suppressive function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Aebi U, Cohn J, Buhle L, Gerace L . (1986). Nature 323: 560–564.

  • Boyer SN, Wazer DE, Band V . (1996). Cancer Res 56: 4620–4624.

  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R . (2003). Nat Genet 34: 263–264.

  • Brummelkamp TR, Bernards R, Agami R . (2002). Science 296: 550–553.

  • Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . (2003). Oncogene 22: 5938–5945.

  • Doench JG, Petersen CP, Sharp PA . (2003). Genes Dev 17: 438–442.

  • Dykxhoorn DM, Novina CD, Sharp PA . (2003). Nat Rev Mol Cell Biol 4: 457–467.

  • Elbashir SM, Lendeckel W, Tuschl T . (2001). Genes Dev 15: 188–200.

  • Gonzalez SL, Stremlau M, He X, Basile JR, Munger K . (2001). J Virol 75: 7583–7591.

  • Goodwin EC, Yang E, Lee CJ, Lee HW, DiMaio D, Hwang ES . (2000). Proc Natl Acad Sci USA 97: 10978–10983.

  • Haley B, Zamore PD . (2004). Nat Struct Mol Biol 11: 599–606.

  • Hall AH, Alexander KA . (2003). J Virol 77: 6066–6069.

  • Hammond SM, Bernstein E, Beach D, Hannon GJ . (2000). Nature 404: 293–296.

  • Howley PM, Lowy DR . (2001). In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B et al. (eds). Field Virology. Lippincott Williams & Wilkins: Philadelphia, pp 2197–2229.

    Google Scholar 

  • Jiang M, Milner J . (2002). Oncogene 21: 6041–6048.

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA et al. (2003). Dev Cell 4: 205–217.

  • Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM et al. (1993). Proc Natl Acad Sci USA 90: 3988–3992.

  • Knight SW, Bass BL . (2002). Mol Cell 10: 809–817.

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C et al. (2005). Science 308: 557–560.

  • Li H, Li WX, Ding SW . (2002). Science 296: 1319–1321.

  • Li WX, Li H, Lu R, Li F, Dus M, Atkinson P et al. (2004). Proc Natl Acad Sci USA 101: 1350–1355.

  • Lu S, Cullen BR . (2004). J Virol 78: 12868–12876.

  • Mallory AC, Reinhart BJ, Bartel D, Vance VB, Bowman LH . (2002). Proc Natl Acad Sci USA 99: 15228–15233.

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T . (2002). Cell 110: 563–574.

  • Mayeda A, Krainer AR . (1999). Methods Mol Biol 118: 309–314.

  • Nykanen A, Haley B, Zamore PD . (2001). Cell 107: 309–321.

  • Pfeffer S, Lagos-Quintana M, Tuschl T . (2003). In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al. (eds). Current Protocols in Molecular Biology. John Wiley & Sons, Inc.: New York, pp 26.4.1–26.4.18.

    Google Scholar 

  • Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ . (2004). Cell 117: 83–94.

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O . (2002). EMBO J 21: 5864–5874.

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . (2004). Nat Biotechnol 22: 326–330.

  • Scadden AD, Smith CW . (2001). EMBO Rep 2: 1107–1111.

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). Cell 63: 1129–1136.

  • Schulze A, Mannhardt B, Zerfass-Thome K, Zwerschke W, Jansen-Durr P . (1998). J Virol 72: 2323–2334.

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD . (2003). Cell 115: 199–208.

  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . (2003). Nat Cell Biol 5: 834–839.

  • Smotkin D, Wettstein FO . (1986). Proc Natl Acad Sci USA 83: 4680–4684.

  • Soldan SS, Plassmeyer ML, Matukonis MK, Gonzalez-Scarano F . (2005). J Virol 79: 234–244.

  • Tang S, Zheng ZM . (2002). J Biol Chem 277: 14547–14556.

  • Tao M, Kruhlak M, Xia S, Androphy E, Zheng ZM . (2003). J Virol 77: 13232–13247.

  • Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA et al. (2004). Cell 116: 831–841.

  • Vindelov LL . (1977). Virchows Arch B Cell Pathol 24: 227–242.

  • Vousden KH . (2000). Cell 103: 691–694.

  • Yaginuma Y, Westphal H . (1991). Cancer Res 51: 6506–6509.

  • Yang W, Wang Q, Howell KL, Lee JT, Cho DS, Murray JM et al. (2005). J Biol Chem 280: 3946–3953.

  • Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y et al. (2003). Mol Ther 8: 762–768.

  • Yu JY, DeRuiter SL, Turner DL . (2002). Proc Natl Acad Sci USA 99: 6047–6052.

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP . (2000). Cell 101: 25–33.

  • Zeng Y, Yi R, Cullen BR . (2003). Proc Natl Acad Sci USA 100: 9779–9784.

  • Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W . (2002). EMBO J 21: 5875–5885.

  • Zheng ZM, Tao M, Yamanegi K, Bodaghi S, Xiao W . (2004). J Mol Biol 337: 1091–1108.

  • zur Hausen H . (2002). Nat Rev Cancer 2: 342–350.

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. We thank Reuven Agami for providing pSUPER and pSUPER-p53 vectors, many of our colleagues for their encouragement in the course of these studies, Sohrab Bodaghi in our lab for providing bacterially expressed HPV16 E7 for the Western blot control. We also thank Douglas Lowy, Robert Yarchoan, Peter Palese, Bruce Paterson, Erik Sontheimer, and Natasha Caplen for their critical reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z M Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S., Tao, M., McCoy, J. et al. Short-term induction and long-term suppression of HPV16 oncogene silencing by RNA interference in cervical cancer cells. Oncogene 25, 2094–2104 (2006). https://doi.org/10.1038/sj.onc.1209244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209244

Keywords

This article is cited by

Search

Quick links