Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ras and RhoA suppress whereas RhoB enhances cytokine-induced transcription of nitric oxide synthase-2 in human normal liver AKN-1 cells and lung cancer A-549 cells

Abstract

While both nitric oxide synthase-2 (NOS-2) and low molecular weight GTPases, such as Ras and Rho, have been implicated in malignant transformation, the cross talk between these important proteins is ill understood. In this study we examined the ability of H-Ras, RhoA, RhoB and Rac1 to modulate cytokine-induced NOS2. In the normal human liver AKN-1 cell line and in the human non-small cell lung carcinoma cell line, A-549, the ability of the cytokines (INF-γ, IL-1β and TNF-α) to activate NOS-2 was blocked by activated L61-H-Ras whereas dominant negative N17-H-Ras enhanced NOS-2 activation. Consistent with this dominant negative Erk2 as well as a MEK inhibitor also enhanced cytokine activation of NOS-2. Furthermore, activated L63-RhoA blocked whereas activated V14-RhoB enhanced cytokine NOS-2 activation. Activated I115-Racl did not affect NOS-2 activation. These results demonstrate that the Ras/Erk and the Ras/RhoA pathways negatively regulate whereas RhoB enhances cytokine-induced NOS-2. This is the first demonstration that genes that promote malignant transformation such as Ras and RhoA inhibit, whereas genes with tumor suppresser activity such as RhoB enhance NOS2 induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

NO:

nitric oxide

NOS:

nitric oxide synthase

INF:

interferon

IL:

interleukin

TNF:

tumor necrosis factor

LPS:

lypopolysaccharides

MAPK:

mitogen-activated protein kinase.

References

  • Barbacid M . 1987 Annu. Rev. Biochem. 56: 779–827

  • Baron R, Fourcade E, Lajoie-Mazenc I, Allal C, Couderc B, Barbaras R, Favre G, Faye J-C, Pradines A . 2000 Proc. Natl. Acad. Sci. USA 97: 11626–11631

  • Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ . 1998 Oncogene 17: 1395–1413

  • Chen Z, Sun J, Pradines A, Favre G, Adnane J, Sebti SM . 2000 J. Biol. Chem. 275: 17974–17978

  • Cunha FQ, Moncada S, Liew FY . 1992 Biochem Biophys Res. Commun. 182: 1155–1159

  • Curley SA, Roh MS, Feig B, Oyedeji C, Kleinerman ES, Klostergaard J . 1993 J. Leukoc Biol. 53: 715–721

  • de Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris Jr SM, Billiar TR, Geller DA . 1996 Proc. Natl. Acad. Sci. USA 93: 1054–1059

  • Dong Z, Staroselsky AH, Qi X, Xie K, Fidler IJ . 1994 Cancer Res. 54: 789–793

  • Finder JD, Litz JL, Blaskovich MA, McGuire TF, Qian Y, Hamilton AD, Davies P, Sebti SM . 1997 J. Biol. Chem. 272: 13484–13488

  • Her J–H, Lakhani S, Zu K, Vila J, Dent P, Sturgill TW, Weber MJ . 1993 Mol. Cell. Biol. 19: 7519–7528

  • Juang SH, Xie K, Xu L, Wang Y, Yoneda J, Fidler IJ . 1997 Cancer Biother. Radiopharm. 12: 167–175

  • Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ . 1995 Mol. Cell Biol. 15: 6443–6453

  • Lepoivre M, Boudbid H, Petit JF . 1989 Cancer Res. 49: 1970–1976

  • Mordan LJ, Burnett TS, Zhang LX, Tom J, Cooney RV . 1993 Carcinogenesis 14: 1555–1559

  • Muniyappa R, Xu R, Ram JL, Sowers JR . 2000 Am. J. Physiol. Heart Circ. Physiol. 278: H1762–H1768

  • Nathan CF, Hibbs Jr JB . 1991 Curr. Opin. Immunol. 3: 65–70

  • Nussler AK, Vergani G, Gollin SM, Dorko K, Morris Jr SM, Demetris AJ, Nomoto M, Beger HG, Strom SC . 1999 In Vitro Cell Dev. Biol. Anim. 35: 190–197

  • Pahan K, Liu X, McKinney MJ, Wood C, Sheikh FG, Raymond JR . 2000 J. Neurochem 74: 2288–2295

  • Pahan K, Sheikh FG, Khan M, Namboodiri AM, Singh I . 1998 J. Biol. Chem. 273: 2591–2600

  • Palmer RM, Ferrige AG, Moncada S . 1987 Nature 327: 524–526

  • Sambrook J, Fritsch EF, Miniatis T . 1989 Molecular Cloning. A Laboratory Manual 2nd edn Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Schini VB, Durante W, Elizondo E, Scott-Burden T, Junquero DC, Schafer AI, Vanhoutte PM . 1992 Eur. J. Pharmacol 216: 379–383

  • Schmidt HH, Walter U . 1994 Cell 78: 919–925

  • Shi Q, Xiong Q, Wang B, Le X, Khan NA, Xie K . 2000 Cancer Res. 60: 2579–2583

  • Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA . 1996 J. Biol. Chem. 271: 1111–1117

  • Stuehr DJ . 1997 Annu. Rev. Pharmacol Toxicol 37: 339–359

  • Wang B, Xiong Q, Shi Q, Le X, Abbruzzese JL, Xie K . 2001 Cancer Res. 61: 71–75

  • Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL, Der CJ . 1998 Oncogene 17: 1415–1438

Download references

Acknowledgements

We would like to thank Dr Channing Der for the wild-type and mutants of Ras, RhoA and Rac1, Dr Richard Jove for dominant negative Erk (Her et al., 1993) and Dr Allan Hall for the RhoB mutants. This work was supported by NCI grant CA67771 (SM Sebti).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd M Sebti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delarue, F., Taylor, B. & Sebti, S. Ras and RhoA suppress whereas RhoB enhances cytokine-induced transcription of nitric oxide synthase-2 in human normal liver AKN-1 cells and lung cancer A-549 cells. Oncogene 20, 6531–6537 (2001). https://doi.org/10.1038/sj.onc.1204801

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204801

Keywords

This article is cited by

Search

Quick links