Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Cdc25A phosphatase suppresses apoptosis induced by serum deprivation

Abstract

The phosphatase Cdc25A was shown to be a target of the transcription factor c-Myc. Myc-induced apoptosis appeared dependent on Cdc25A expression and Cdc25A over-expression could substitute for Myc-triggered apoptosis. These findings suggested that an important downstream component of Myc-mediated apoptosis was identified. However and in contrast, we recently reported that during TNFα-induced apoptosis, which required c-Myc function, Cdc25A was down-regulated in a human carcinoma cell line. We now provide evidence that Cdc25A rendered the non-transformed rat embryonic cell line 423 refractory to apoptosis, which was induced by serum deprivation and in absence of detectable c-myc levels. The survival promoting activity of cdc25A was abolished upon infection of cells with a full-length cdc25A antisense construct. To identify the signaling proteins mediating the survival function of the phosphatase, cdc25A- and akt- over-expressing pooled clones were exposed to selected chemicals, which inhibit or activate key proteins in signaling pathways. Inhibition of apoptosis by SU4984, NF023 and Rapamycin placed Cdc25A and Akt function downstream of FGF.R, PDGF.R, and compensated G-protein- and PP2A- activity. Interestingly, upon treatment with LY-294002, cdc25A- and akt- over-expressing clones exhibited similar apoptotic patterns as control cells, which indicates that neither Akt- nor Cdc25A-mediated survival functions are dependent on PI.3 kinase activity in rat 423 cells. In cdc25A-overexpressing cells increased levels of serine 473 phosphorylated Akt were found, which co-precipitated with Cdc25A and Raf1. Since activation of proteins requires dephosphorylation of particular residues in addition to site-specific phosphorylation, the anti-apoptotic effect of Cdc25A might derive from its participation in a multimeric protein complex with phosphoAkt and Raf1, two prominent components of survival pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Cerni C, Patocka K, Meneguzzi G . 1990 Virology 177: 427–436

  • Conklin D, Galaktionov K, Beach D . 1995 Proc. Natl. Acad. Sci. USA 92: 7892–7896

  • Coqueret O, Berube G, Nepveu A . 1998 EMBO J. 17: 4680–4694

  • Das G, Vohra H, Rao K, Saha B, Mishra GC . 1999 Scand. J. Immunol. 49: 307–310

  • Donath MY, Gross DJ, Cerasi E, Kaiser N . 1999 Diabetes 48: 738–744

  • Evan G, Wyllie A, Gilbert C, Littlewood T, Land H, Brooks M, Waters C, Hancock D . 1992 Cell 69: 119–128

  • Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT . 1994 Nature 371: 612–614

  • Galaktionov K, Jessus C, Beach D . 1995 Genes Dev. 9: 1046–1058

  • Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, Beach D . 1995 Science 269: 1575–1577

  • Galaktionov K, Chen X, Beach D . 1996 Nature 382: 511–517

  • Grusch M, Rosenberger G, Fuhrmann G, Braun K, Titscher B, Szekeres T, Fitzer-Szekeres M, Oberhuber G, Krohn K, Hengstschläger M, Krupitza G, Jayaram H . 1999 Cell. Death Diff. 6: 736–744

  • Gu Y, Rosenblatt J, Morgan D . 1992 EMBO J. 11: 3995–4005

  • Harrington EA, Bennett MR, Fanidi A, Evan GI . 1994 EMBO J. 13: 3286–3295

  • Hoffmann I, Draetta G, Karsenti E . 1994 EMBO J. 13: 4302–4310

  • Hueber A, Evan G . 1998 Trends Genet. 14: 364–367

  • Hunter T . 1995 Cell 80: 225–236

  • Jaworowski A, Crowe SM . 1999 Immunol. Cell. Biol. 77: 90–98

  • Jinno S, Suto K, Nagata A, Igarashi M, Kanaoka Y, Nojima H, Okayama H . 1994 EMBO J. 13: 1549–1556

  • Jolles J, Bothmer J, Markerink M, Ravid R . 1993 Dementia 4: 81–86

  • King K, Cidlowsky J . 1998 Ann. Rev. Physiol 1998 60: 601–617

  • Krupitza G, Hulla W, Harant H, Dittrich E, Kallay E, Huber H, Dittrich C . 1995 Int. J. Cancer 61: 649–657

  • Krupitza G, Grusch M, Braun K, Fuhrmann G, Steinbrugger R, Hulla W, Simonitsch I, Chott A, Hengstschläger M . 1998 Cell. Death Diff. 5: 758–764

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR . 1994 Nature 369: 156–160

  • LeGall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, van Obberghen-Schilling E . 2000 Mol. Biol. Cell 11: 1103–1112

  • Ma ZQ, Chua SS, DeMayo FJ, Tsai SY . 1999 Oncogene 18: 4564–4576

  • Marcu KB, Bossone SA, Patel AJ . 1992 Ann. Rev. Biochem. 61: 809–860

  • MacLachlan TK, Sang N, Giordano A . 1995 Crit. Rev. Eukaryot. Gene. Express. 5: 127–156

  • Morgenstern J, Land H . 1990 Nucl. Acids Res. 18: 3587–3596

  • O'Connor R, Kauffmann-Zeh A, Liu Y, Lehar S, Evan GI, Baserga R, Blattler WA . 1997 Mol. Cell. Biol. 17: 427–435

  • Oberhammer F, Hochegger K, Fröschl G, Tiefenbacher R, Pavelka M . 1994 J. Cell. Biol. 126: 827–837

  • Pear S, Nolan G, Scott M, Baltimore D . 1993 Proc. Natl. Sci. USA 90: 8392–8396

  • Perez-Roger I, Solomon D, Sewing A, Land H . 1997 Oncogene 14: 2373–2381

  • Peterson RT, Desai BN, Hardwick JS, Schreiber SL . 1999 Proc. Natl. Acad. Sci. USA 96: 4438–4442

  • Pusch O, Bernaschek G, Eilers M, Hengstschläger M . 1997 Oncogene 15: 649–656

  • Qin XQ, Livingston DM, Kaelin Jr WG, Adams PD . 1994 Proc. Natl. Acad. Sci. USA 91: 10918–10922

  • Reuther GW, Fu H, Cripe LD, Collier RJ, Pendergast AM . 1994 Science 266: 129–133

  • Romashkova JA, Makarov SS . 1999 Nature 401: 86–90

  • Shan B, Lee WH . 1994 Mol. Cell. Biol. 14: 8166–8173

  • Simonitsch I, Krupitza G . 1998 Br. J. Cancer 78: 862–870

  • Spitovsky D, Jansen-Durr P, Karsenti E, Hoffman I . 1996 Oncogene 12: 2549–2554

  • Thompson B . 1998 Ann Rev. Physiol. 60: 575–600

  • Tiefenbrun N, Melamed D, Levy N, Resnitzky D, Hoffman I, Reed S, Kimchi A . 1996 Mol. Cell. Biol. 16: 3934–3944

  • Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B . 1996 EMBO J. 15: 6595–6604

  • Wu X, Levine AJ . 1994 Proc. Natl. Acad. Sci. USA. 91: 3602–3606

  • Xia K, Lee RS, Narsimhan RP, Mukhopadhyay NK, Neel BG, Roberts TM . 1999 Mol. Cell. Biol. 19: 4819–4824

Download references

Acknowledgements

We are thankful for the cDNAs of cdc25A, from Dr David Beach, Howard Hughes Medical Institute; of cdk2 and akt from Dr Johannes Hofmann from IMP, Vienna; and for the pBabe-puro vector from Dr Trevor Littlewood, ICRF, London; the Phoenix ecotropic packaging cell line from Dr Gary P Nolan, Stanford University School of Medicine, CA, and to Anton Jäger for helping with the figures and Dr Georg Oberhuber for helping with statistics. This work was supported in part by Jubilaeumsfonds der Oesterreichischen Nationalbank No.: 7220, the Kommission Onkologie, the Herzfeldersche Familienstiftung and the Anton Dreher Gedächtnisstiftung No. 332–1999 (to G Krupitza) and by a research fellowship of the Medical Faculty of the University of Vienna, and by the Theodor Körner Stiftungspreis (to M Grusch).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrmann, G., Leisser, C., Rosenberger, G. et al. Cdc25A phosphatase suppresses apoptosis induced by serum deprivation. Oncogene 20, 4542–4553 (2001). https://doi.org/10.1038/sj.onc.1204499

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204499

Keywords

This article is cited by

Search

Quick links