Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A mutant form of the rho protein can restore stress fibers and adhesion plaques in v-src transformed fibroblasts

Abstract

The organization of polymerized actin in the mammalian cell is regulated by several members of the rho family. Three rho proteins, cdc42, rac and rho act in a cascade to organize the intracellular actin cytoskeleton. Rho proteins are involved in the formation of actin stress fibers and adhesion plaques in fibroblasts. During transformation of mammalian cells by oncogenes the cytoskeleton is rearranged and stress fibers and adhesion plaques are disintegrated. In this paper we investigate the function of the rho protein in RR1022 rat fibroblasts transformed by the Rous sarcoma virus. Two activated mutants of the rho protein, rho G14V and rho Q63L, and a dominant negative mutant, rho N117I, were stably transfected into RR1022 cells. The resulting cell lines were analysed for the organization of polymerized actin and adhesion plaques. Cells expressing rho Q63L, but not rho wt, rho G14V or rho N117I, showed an altered morphology. These cells displayed a flat, fibroblast like shape when compared with the RR1022 ancestor cells. Immunofluorescence analyses revealed that actin stress fibers and adhesion plaques were rearranged in these cells. We conclude from these data that an active rho protein can restore elements of the actin cytoskeleton in transformed cells by overriding the tyrosine kinase phosphorylation induced by the pp60v-src.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adamson P, Paterson HF and Hall A. . 1992 J. Cell. Biol. 119: 617–627.

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y and Kaibuchi K. . 1996 J. Biol. Chem. 271: 20246–20249.

  • Barbacid M. . 1987 Ann. Rev. Biochem. 56: 779–827.

  • Barnekow A. . 1991 Behring Inst. Mitt. 8: 67–73.

  • Barnekow A and Schartl M. . 1984 Mol. Cell. Biol. 4: 1179–1181.

  • Barnekow A and Schartl M. . 1987 Comp. Biochem. Physiol. B. 87: 663–670.

  • Bordier C. . 1981 J. Biol. Chem. 256: 1604–1607.

  • Brott B, Decker KS, Shafer JB, Gibbs J and Jove R. . 1991 Proc. Natl. Acad. Sci. USA 88: 755–759.

  • Cerione RA and Zheng Y. . 1996 Curr. Opin. Cell. Biol. 8: 216–222.

  • Chang JH, Gill S, Settleman J and Parsons SJ. . 1995 J. Cell. Biol. 130: 355–368.

  • DeClue JE and Martin GS. . 1987 Mol. Cell. Biol. 7: 371–378.

  • Eaton S, Auvinen P, Luo KL, Jan NJ and Simons K. . 1995 J. Cell. Biol. 131: 151–164.

  • Erpel T and Courtneidge SA. . 1995 Curr. Opin. Cell. Biol. 7: 176–182.

  • Evans GI, Lewis GK, Ramsay G and Bishop MJ. . 1985 Mol. Cell. Biol. 5: 3610–3616.

  • Frame MC, Simpson K, Fincham VJ and Crouch DH. . 1994 Mol. Cell. Biol. 5: 1177–1184.

  • Guan JL and Shalloway D. . 1992 Nature 358: 690–692.

  • Gupta SK, Gallego C, Johnson GL and Heasley LE. . 1992 J. Biol. Chem. 267: 7987–7990.

  • Hall A. . 1992 Mol. Cell. Biol. 3: 475–479.

  • Hall A. . 1994 Ann. Rev. Cell. Biol. 10: 31–54.

  • Hirst R, Horwitz A, Buck C and Rohrschneider L. . 1986 Proc. Natl. Acad. Sci. USA 83: 6470–6474.

  • Horvath AR, Elmore MA and Kellie S. . 1990 Oncogene 5: 1349–1357.

  • Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N and Narumiya S. . 1996 EMBO J. 15: 1885–1893.

  • Kellie S, Patel B, Mitchell A, Critchley DR, Wigglesworth NM and Wyke JA. . 1986 J. Cell Sci. 82: 129–142.

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A and Kaibuchi K. . 1996 Science 273: 245–248.

  • Lamarche N and Hall A. . 1994 Trends Genet. 10: 436–440.

  • Leung T, Chen XQ, Manser E and Lim L. . 1996 Mol. Cell. Biol. 16: 5313–5327.

  • Madaule P and Axel R. . 1985 Cell 41: 31–40.

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A and Kaibuchi K. . 1996 EMBO J. 15: 2208–2216.

  • Munro S and Pelham HR. . 1987 Cell 48: 899–907.

  • Nobes CD and Hall R. . 1995 Cell 81: 53–62.

  • Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P and Madara JL. . 1995 Proc. Natl. Acad. Sci. USA 92: 10629–10633.

  • Pasquale EB, Maher PA and Singer SJ. . 1986 Proc. Natl. Acad. Sci. USA 83: 5507–5511.

  • Ridley AJ and Hall A. . 1992 Cell 70: 389–399.

  • Ridley AJ and Hall A. . 1994 EMBO J. 13: 2600–2610.

  • Rohrschneider L and Reynolds S. . 1985 Mol. Cell. Biol. 5: 3097–3107.

  • Schiedel AC, Barnekow A and Mayer T. . 1995 FEBS Lett. 376: 113–119.

  • Seabra MC. . 1996 J. Biol. Chem. 271: 14398–14404.

  • Sefton BM, Hunter T, Ball EH and Singer SJ. . 1981 Cell 24: 165–174.

  • Settleman J, Albright CF, Foster LC and Weinberg RA. . 1992 Nature 359: 153–154.

  • Stoker AW, Kellie S and Wyke JA. . 1986 J. Virol. 58: 876–883.

  • Stossel TP. . 1989 J. Biol. Chem. 264: 18261–18264.

  • Takai Y, Sasaki T, Tanaka K and Nakanishi H. . 1995 Trends Biochem. Sci. 20: 227–231.

  • Tapon N and Hall A. . 1997 Curr. Opin. Cell. Biol. 9: 86–92.

  • Taylor JW, Ott J and Eckstein F. . 1985 Nucleic Acids Res. 13: 8765–8785.

  • Trouliaris S, Smola U, Chang JH, Parsons SJ, Niemann H and Tamura T. . 1995 J. Virol. 69: 6010–6020.

  • Turner CE. . 1991 J. Cell. Biol. 115: 201–207.

  • Wang HC and Erikson RL . 1992 Mol. Cell. Biol. 3: 1329–1337.

  • Watanabe G, Saito Y, Madaule P, Ishizaki T, Fujisawa K, Morii N, Mukai H, Ono Y, Kakizuka A and Narumiya S. . 1996 Science 271: 645–648.

  • Wyke AW, Cushley W and Wyke JA. . 1993 Cell Growth Differ. 4: 671–678.

  • Wyke AW, Frame MC, Gillespie DA, Chudleigh A and Wyke JA. . 1995 Cell Growth Differ. 6: 1225–1234.

Download references

Acknowledgements

We thank Prof Dr Henning for the RR1022 cells and Dr Gisela Banauch for critically reading the manuscript. In addition we thank E Ossendorf for performing the pp60 kinase assay. The work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 310, A9) to TM and AB and Fonds der Chemischen Industrie to AB.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, T., Meyer, M., Janning, A. et al. A mutant form of the rho protein can restore stress fibers and adhesion plaques in v-src transformed fibroblasts. Oncogene 18, 2117–2128 (1999). https://doi.org/10.1038/sj.onc.1202537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202537

Keywords

This article is cited by

Search

Quick links