Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Noninvasive detection of coronary atherosclerotic plaque by multidetector row computed tomography

Abstract

BACKGROUND:

Coronary artery disease continues to be one of the leading causes of death and disability around the globe, challenging the efficacy of currently applied schemes to predict the risk for future coronary events. In fact, algorithms such as the Framingham risk score that are based on traditional risk factors like hypertension and dyslipidemia are not very sensitive, leaving a majority of the population at intermediate risk.

METHODS:

Advances in multidetector computed tomography (MDCT) technology with submillimeter slice collimation (0.6 mm) and high temporal resolution now permit contrast-enhanced imaging of the coronary artery lumen and wall in a single breath hold. The current generation of MDCT provided in-plane resolution of 0.5 mm and a temporal resolution of 210 ms. The simultaneous acquisition of 16/64 parallel cross-sections reduces image acquisition time to about 10–20 s using 60–80 ml of contrast agents to opacify the coronary artery lumen. CT imaging for coronary calcification is an established method with low radiation exposure. The amount of calcification is expressed as an Agatston Score (AS).

RESULTS:

The presence and amount of coronary calcification significantly increases the relative risk for future coronary events, independent from traditional risk factors (risk ratio 8.7 [95% CI, 2.7–28.1]). Especially, individuals with a high AS (>400) who are at intermediate 10-y Framingham event risk may benefit from this additional risk stratification. However, calcification is rarely present in children and adolescents. However, there is a growing body of evidence suggesting that contrast-enhanced MDCT can detect both calcified and noncalcified plaques with high sensitivity and specificity for the detection of plaques >0.5 mm when compared to intravascular ultrasound. Moreover, initial data suggest that plaque characteristics such as plaque area, volume, quantify and coronary plaque remodeling index can be quantified in good agreement with IVUS. The composition of noncalcified plaque may be further stratified into predominantly fibrous or lipid-rich plaque. Noncalcified plaque may be present already in children and adolescents with multiple risk factors.

CONCLUSION:

The available data indicate that high resolution MDCT can reliably detect, quantify and characterize calcified and noncalcified coronary atherosclerotic plaque. With MDCT, we now have a unique opportunity to study the natural history and response to therapy of noncalcified coronary plaques, which may be already present in obese children or children with multiple risk factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Association AH. Heart and stroke statistical update. American Heart Association: Dallas, TX; 2002.

  2. Yusuf S, Reddy S, Ounpuu S, Anand S . Global burden of cardiovascular diseases, I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001; 104: 2746–2753.

    Article  CAS  PubMed  Google Scholar 

  3. Myerburg RJ, Interian Jr A, Mitrani RM, Kessler KM, Castellanos A . Frequency of sudden cardiac death and profiles of risk. Am J Cardiol 1997; 80: 10F–19F.

    Article  CAS  PubMed  Google Scholar 

  4. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull Jr W, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT . From vulnerable plaque to vulnerable patient a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664–1672.

    Article  PubMed  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM . Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262–1275.

    Article  CAS  PubMed  Google Scholar 

  6. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V . Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56–62.

    Article  CAS  PubMed  Google Scholar 

  7. Neunteufl T, Heher S, Katzenschlager R, Wolfl G, Kostner K, Maurer G, Weidinger F . Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol 2000; 86: 207–210.

    Article  CAS  PubMed  Google Scholar 

  8. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R . Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827–832.

    Article  CAS  PubMed  Google Scholar 

  9. Arad Y, Spadaro LA, Roth M, Scordo J, Goodman K, Sherman S, Lledo A, Lerner G, Guerci AD . Correlations between vascular calcification and atherosclerosis: a comparative electron beam CT study of the coronary and carotid arteries. J Comput Assist Tomogr 1998; 22: 207–211.

    Article  CAS  PubMed  Google Scholar 

  10. Chaitman BR, Rosen AD, Williams DO, Bourassa MG, Aguirre FV, Pitt B, Rautaharju PM, Rogers WJ, Sharaf B, Attubato M, Hardison RM, Srivatsa S, Kouchoukos NT, Stocke K, Sopko G, Detre K, Frye R . Myocardial infarction and cardiac mortality in the Bypass Angioplasty Revascularization Investigation (BARI) randomized trial. Circulation 1997; 96: 2162–2170.

    Article  CAS  PubMed  Google Scholar 

  11. O'Malley PG, Taylor AJ, Jackson JL, Doherty TM, Detrano RC . Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 2000; 85: 945–948.

    Article  CAS  PubMed  Google Scholar 

  12. Arad Y, Newstein D, Roth M, Guerci AD . Rationale and design of the St Francis Heart Study: a randomized clinical trial of atorvastatin plus antioxidants in asymptomatic persons with elevated coronary calcification. Controlled Clin Trials 2001; 22: 553–572.

    Article  CAS  PubMed  Google Scholar 

  13. Georgiou D, Budoff MJ, Kaufer E, Kennedy JM, Lu B, Brundage BH . Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol 2001; 38: 105–110.

    Article  CAS  PubMed  Google Scholar 

  14. Laudon DA, Vukov LF, Breen JF, Rumberger JA, Wollan PC, Sheedy II PF . Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med 1999; 33: 15–21.

    Article  CAS  PubMed  Google Scholar 

  15. Raggi P, Callister TQ, Cooil B, Russo DJ, Lippolis NJ, Patterson RE . Evaluation of chest pain in patients with low to intermediate pretest probability of coronary artery disease by electron beam computed tomography. Am J Cardiol 2000; 85: 283–288.

    Article  CAS  PubMed  Google Scholar 

  16. Budoff MJ, Diamond GA, Raggi P, Arad Y, Guerci AD, Callister TQ, Berman D . Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 2002; 105: 1791–1796.

    Article  PubMed  Google Scholar 

  17. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R . Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105: 297–303.

    Article  PubMed  Google Scholar 

  18. Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, Badimon JJ . Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000; 101: 586–589.

    Article  CAS  PubMed  Google Scholar 

  19. Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, Brady TJ, Pomerantsev E, Ludwig J, Flachskampf FA, Wicky S, Jang IK, Daniel WG . Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 2004; 43: 842–847.

    Article  PubMed  Google Scholar 

  20. Nakamura M, Nishikawa H, Mukai S, Setsuda M, Nakajima K, Tamada H, Suzuki H, Ohnishi T, Kakuta Y, Nakano T, Yeung AC . Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study*1. J Am College Cardiol 2001; 37: 63–69.

    Article  CAS  Google Scholar 

  21. Hong M-K, Park S-W, Lee CW, Ko J-Y, Kang D-H, Song J-K, Kim J-J, Mintz GS, Park S-J . Intravascular ultrasound findings of negative arterial remodeling at sites of focal coronary spasm in patients with vasospastic angina. Am Heart J 2000; 140: 395–401.

    Article  CAS  PubMed  Google Scholar 

  22. Kotani J, Mintz GS, Castagna MT, Pinnow E, Berzingi CO, Bui AB, Pichard AD, Satler LF, Suddath WO, Waksman R, Laird Jr JR, Kent KM, Weissman NJ . Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation 2003; 107: 2889–2893.

    Article  PubMed  Google Scholar 

  23. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM . Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000; 101: 598–603.

    Article  CAS  PubMed  Google Scholar 

  24. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB . Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837–1847.

    Article  CAS  PubMed  Google Scholar 

  25. Boden WE . Therapeutic implications of recent ATP III guidelines and the important role of combination therapy in total dyslipidemia management. Curr Opin Cardiol 2003; 18: 278–285.

    Article  PubMed  Google Scholar 

  26. Gotto AM . NCEP ATP III guidelines incorporate global risk assessment. Am J Manag Care 2003; (Suppl) 1, 3.

  27. Virmani R, Burke AP, Kolodgie FD, Farb A . Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol 2002; 15: 439–446.

    Article  PubMed  Google Scholar 

  28. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R . Pathophysiology of calcium deposition in coronary arteries. Herz 2001; 26: 239–244.

    Article  CAS  PubMed  Google Scholar 

  29. Burke AP, Taylor A, Farb A, Malcom GT, Virmani R . Coronary calcification: insights from sudden coronary death victims. Z Kardiol 2000; 89 (Suppl 2): 49–53.

    Article  PubMed  Google Scholar 

  30. Asakura M, Ueda Y, Yamaguchi O, Adachi T, Hirayama A, Hori M, Kodama K . Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol 2001; 37: 1284–1288.

    Article  CAS  PubMed  Google Scholar 

  31. Rioufol G, Finet G, Ginon I, Andre-Fouet X, Rossi R, Vialle E, Desjoyaux E, Convert G, Huret JF, Tabib A . Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 2002; 106: 804–808.

    Article  CAS  PubMed  Google Scholar 

  32. Bezerra HG, Higuchi ML, Gutierrez PS, Palomino SA, Silvestre JM, Libby P, Ramires JA . Atheromas that cause fatal thrombosis are usually large and frequently accompanied by vessel enlargement. Cardiovasc Pathol 2001; 10: 189–196.

    Article  CAS  PubMed  Google Scholar 

  33. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O'Neill WW . Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000; 343: 915–922.

    Article  CAS  PubMed  Google Scholar 

  34. Fayad ZA, Fuster V, Nikolaou K, Becker C . Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 2002; 106: 2026–2034.

    Article  PubMed  Google Scholar 

  35. Glagov S, Weisenberg E, Zarins C, Stankunavicius R, Kolettis G . Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–1375.

    Article  CAS  PubMed  Google Scholar 

  36. Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy PM, Young JB, Nissen SE . High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 2001; 103: 2705–2710.

    Article  CAS  PubMed  Google Scholar 

  37. Gussenhoven EJ, Essed CE, Frietman P, van Egmond F, Lancee CT, van Kappellen WH, Roelandt J, Serruys PW, Gerritsen GP, van Urk H et al. Intravascular ultrasonic imaging: histologic and echographic correlation. Eur J Vasc Surg 1989; 3: 571–576.

    Article  CAS  PubMed  Google Scholar 

  38. Gussenhoven EJ, Essed CE, Lancee CT, Mastik F, Frietman P, van Egmond FC, Reiber J, Bosch H, van Urk H, Roelandt J et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 1989; 14: 947–952.

    Article  CAS  PubMed  Google Scholar 

  39. Nishimura RA, Edwards WD, Warnes CA, Reeder GS, Holmes Jr DR, Tajik AJ, Yock PG . Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 1990; 16: 145–154.

    Article  CAS  PubMed  Google Scholar 

  40. Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, Leon MB . Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990; 81: 1575–1585.

    Article  CAS  PubMed  Google Scholar 

  41. Nissen SE, Yock P . Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 2001; 103: 604–616.

    Article  CAS  PubMed  Google Scholar 

  42. Carlier SG, de Korte CL, Brusseau E, Schaar JA, Serruys PW, van der Steen AF . Imaging of atherosclerosis. Elastography. J Cardiovasc Risk 2002; 9: 237–245.

    Article  PubMed  Google Scholar 

  43. de Korte CL, Pasterkamp G, van der Steen AF, Woutman HA, Bom N . Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000; 102: 617–623.

    Article  CAS  PubMed  Google Scholar 

  44. Matsuzaki M, Hiramori K, Imaizumi T, Kitabatake A, Hishida H, Nomura M, Fujii T, Sakuma I, Fukami K, Honda T, Ogawa H, Yamagishi M . Intravascular ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia: the Low Density Lipoprotein-Apheresis Coronary Morphology and Reserve Trial (LACMART). J Am Coll Cardiol 2002; 40: 220–227.

    Article  PubMed  Google Scholar 

  45. Schartl M, Bocksch W, Koschyk DH, Voelker W, Karsch KR, Kreuzer J, Hausmann D, Beckmann S, Gross M . Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 2001; 104: 387–392.

    Article  CAS  PubMed  Google Scholar 

  46. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG . American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001; 37: 1478–1492.

    Article  CAS  PubMed  Google Scholar 

  47. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG . Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002; 106: 2200–2206.

    Article  PubMed  Google Scholar 

  48. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE . Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003; 107: 113–119.

    Article  PubMed  Google Scholar 

  49. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ . Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640–1645.

    Article  PubMed  Google Scholar 

  50. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ . Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000; 102: 25.

    Article  Google Scholar 

  51. Charash WE, Lodder RA, Moreno PR, Purushothaman RK, Swain JA, O’Connor WN, Muller JE . Detection of simulated vulnerable plaque using a novel infrared spectroscopy catheter. J Am Coll Cardiol 2000; 35: 38A.

    Google Scholar 

  52. Romer Jr TJB, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, van der Steen AF, Bom NA, Bruschke AV . Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 2000; 20: 478–483.

    Article  CAS  PubMed  Google Scholar 

  53. Stefanadis C DL, Vlachopoulos C, Tsiamis E, Dernellis J, Toutouzas K, Stefanadi E, Toutouzas P . Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 1999; 99: 1965–1971.

    Article  PubMed  Google Scholar 

  54. Thieme T, Wernecke KD, Meyer R, Brandenstein E, Habedank D, Hinz A, Felix SB, Baumann G, Kleber FX . Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 1996; 28: 1–6.

    Article  CAS  PubMed  Google Scholar 

  55. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ . Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640–1645.

    Article  PubMed  Google Scholar 

  56. Pletcher MJ, Tice JA, Pignone M, Browner WS . Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 2004; 164: 1285–1292.

    Article  PubMed  Google Scholar 

  57. Ferencik M, Ferullo A, Achenbach S, Abbara S, Chan RC, Booth SL, Brady TJ, Hoffmann U . Coronary calcium quantification using various calibration phantoms and scoring thresholds. Invest Radiol 2003; 38: 559–566.

    Article  PubMed  Google Scholar 

  58. Hong C, Bae KT, Pilgram TK, Suh J, Bradley D . Coronary artery calcium measurement with multi-detector row CT: in vitro assessment of effect of radiation dose. Radiology 2002; 225: 901–906.

    Article  CAS  PubMed  Google Scholar 

  59. Hong C, Bae KT, Pilgram TK . Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector row CT—assessment of effects of different thresholds and quantification methods. Radiology 2003; 227: 795–801.

    Article  PubMed  Google Scholar 

  60. Becker CR, Kleffel T, Crispin A, Knez A, Young J, Schoepf UJ, Haberl R, Reiser MF . Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am J Roentgenol 2001; 176: 1295–1298.

    Article  CAS  PubMed  Google Scholar 

  61. Stanford W, Thompson BH, Burns TL, Heery SD, Burr MC . Coronary artery calcium quantification at multi-detector row helical CT versus electron-beam CT. Radiology 2004; 230: 397–402.

    Article  PubMed  Google Scholar 

  62. Achenbach S, Ropers D, Pohle FK, Raaz D, von Erffa J, Yilmaz A, Muschiol G, Daniel WG . Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J 2005.

  63. Hoffmann U, Moselewski F, Cury RC, Ferencik M, Jang IK, Diaz LJ, Abbara S, Brady TJ, Achenbach S . Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 2004; 110: 2638–2643.

    Article  PubMed  Google Scholar 

  64. Hoffmann U, Jadvar H, Dunn E, d'Janne Othee B . Is CT angiography ready for prime time? A meta-analysis. JACC 2004; 43 (Suppl A): 312A.

    Google Scholar 

  65. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P . Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am College Cardiol 2005; 46: 154.

    Article  Google Scholar 

  66. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, Wildermuth S . Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005; 15: 1482–1487.

    Article  Google Scholar 

  67. Mollet NR, Cademartiri F, Krestin GP, McFadden EP, Arampatzis CA, Serruys PW, de Feyter PJ . Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 2005; 45: 128–132.

    Article  PubMed  Google Scholar 

  68. Nikolaou K, Sagmeister S, Knez A, Klotz E, Wintersperger BJ, Becker CR, Reiser MF . Multidetector-row computed tomography of the coronary arteries: predictive value and quantitative assessment of non-calcified vessel-wall changes. Eur Radiol 2003; 13: 2505–2512.

    Article  PubMed  Google Scholar 

  69. Caussin C, Ohanessian A, Ghostine S, Jacq L, Lancelin B, Dambrin G, Sigal-Cinqualbre A, Angel CY, Paul JF . Characterization of vulnerable nonstenotic plaque with 16-slice computed tomography compared with intravascular ultrasound. Am J Cardiol 2004; 94: 99–104.

    Article  PubMed  Google Scholar 

  70. Becker CR, Nikolaou K, Muders M, Babaryka G, Crispin A, Schoepf UJ, Loehrs U, Reiser MF . Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 2003; 13: 2094–2098.

    Article  PubMed  Google Scholar 

  71. Ferencik M, Achenbach S, Houser S, Tearney GJ, Bouma BE, Hoffmann U, Brady TJ, Chan RC . Performance of 16-slice MDCT for measurement of arterial morphology and composition relative to IVUS and OCT in ex vivo coronary arteries. Circulation 2003; 108: IV528.

    Google Scholar 

  72. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K, Baum U, Anders K, Jang I-k, Daniel WG, Brady TJ . Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004; 109: 14–17.

    Article  PubMed  Google Scholar 

  73. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K, Rist C, Reiser M, White C, Steinbeck G, Boekstegers P . Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques*1: a comparative study with intracoronary ultrasound. J Am College Cardiol 2004; 43: 1241–1247.

    Article  Google Scholar 

  74. Cury RC, Pomerantsev EV, Ferencik M, Hoffmann U, Nieman K, Moselewski F, Abbara S, Jang IK, Brady TJ, Achenbach S . Comparison the degree of coronary stenoses by multi-detector computed tomography - vs - by quantitative coronary angiography. Am J Cardiol 2005 (in press).

  75. Moselewski F, Ropers D, Pohle K, Hoffmann U, Ferencik M, Chan RC, Cury RC, Abbara S, Jang IK, Brady TJ, Daniel WG, Achenbach S . Measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multi-detector CT: comparison to IVUS. Am J Cardiol 2004; 94: 1294–1297.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, U., Butler, J. Noninvasive detection of coronary atherosclerotic plaque by multidetector row computed tomography. Int J Obes 29 (Suppl 2), S46–S53 (2005). https://doi.org/10.1038/sj.ijo.0803083

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803083

Keywords

This article is cited by

Search

Quick links