Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Abnormalities of the somatotrophic axis in the obese agouti mouse

Abstract

Objective:

Abnormalities of the melanocortin system produce obesity and increased linear growth. While the obesity phenotype is well characterised, the mechanism responsible for increased linear growth is unclear. The somatotrophic axis was studied in the obese agouti (Ay/a) mouse as a model of a perturbed melanocortin system.

Design:

Adult obese Ay/a mice were compared to age- and sex-matched wild-type (WT) controls. Weight and body length (nose–anus) were recorded. Plasma growth hormone (GH), insulin-like growth factor-I (IGFI), insulin and leptin were measured using radioimmunoassay. Since ghrelin is a potent GH secretagogue, plasma ghrelin, stomach ghrelin peptide and stomach ghrelin mRNA expression were studied. Hypothalamic periventricular (PeVN) somatostatin neurones and arcuate (Arc) neuropeptide Y (NPY) neurones inhibit the growth axis, whereas Arc growth hormone-releasing hormone (GHRH) neurones are stimulatory. Therefore, specific hypothalamic expression of somatostatin, NPY and GHRH was measured using quantitative in situ hybridisation.

Results:

Obese Ay/a mice were significantly heavier and longer than WT controls. Plasma IGFI concentrations were 30% greater in obese Ay/a mice. Obese Ay/a mice were hyperinsulinaemic and hyperleptinaemic, yet plasma ghrelin, and stomach ghrelin peptide and mRNA were significantly reduced. In obese Ay/a mice, PeVN somatostatin and Arc NPY mRNA expression were reduced by 50% compared to WT controls, whereas Arc GHRH mRNA expression was unchanged.

Conclusion:

Increased body length in adult obese Ay/a mice may result from reduced Arc NPY and PeVN somatostatin mRNA expression, which in turn, may increase plasma IGFI concentrations and upregulate the somatotrophic axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

Ay/a mouse:

agouti mouse

IGFI:

insulin-like growth factor-I

PeVN:

periventricular nucleus

Arc:

arcuate nucleus

GHRH:

growth hormone-releasing hormone

NPY:

neuropeptide Y

AgRP:

agouti-related protein

α-MSH:

alpha melancoyte-stimulating hormone

POMC:

pro-opiomelanocortin

CNS:

central nervous system

GH:

growth hormone

GHS-R:

growth hormone secretagogue receptor

References

  1. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404 (6778): 661–671.

    Article  CAS  Google Scholar 

  2. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278 (5335): 135–138.

    Article  CAS  Google Scholar 

  3. Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 1998; 139 (10): 4428–4431.

    Article  CAS  Google Scholar 

  4. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL . Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997; 17 (3): 273–274.

    Article  CAS  Google Scholar 

  5. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U . Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999; 5 (9): 1066–1070.

    Article  CAS  Google Scholar 

  6. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88 (1): 131–141.

    Article  CAS  Google Scholar 

  7. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S . Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348 (12): 1085–1095.

    Article  CAS  Google Scholar 

  8. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106 (2): 271–279.

    Article  CAS  Google Scholar 

  9. Krude H, Biebermann H, Schnabel D, Tansek MZ, Theunissen P, Mullis PE et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 2003; 88 (10): 4633–4640.

    Article  CAS  Google Scholar 

  10. Watanobe H, Yoneda M . Evaluation of the role of melanocortin 3 and 4 receptors in leptin-stimulated and spontaneous growth hormone secretion in rats. Neuroendocrinology 2003; 78 (6): 331–338.

    Article  CAS  Google Scholar 

  11. Raposinho PD, Castillo E, d'Alleves V, Broqua P, Pralong FP, Aubert ML . Chronic blockade of the melanocortin 4 receptor subtype leads to obesity independently of neuropeptide Y action, with no adverse effects on the gonadotropic and somatotropic axes. Endocrinology 2000; 141 (12): 4419–4427.

    Article  CAS  Google Scholar 

  12. Raposinho PD, White RB, Aubert ML . The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J Neuroendocrinol 2003; 15 (2): 173–181.

    Article  CAS  Google Scholar 

  13. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A . The somatomedin hypothesis: 2001. Endocr Rev 2001; 22 (1): 53–74.

    Article  CAS  Google Scholar 

  14. Muller EE, Locatelli V, Cocchi D . Neuroendocrine control of growth hormone secretion. Physiol Rev 1999; 79 (2): 511–607.

    Article  CAS  Google Scholar 

  15. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000; 141 (11): 4325–4328.

    Article  CAS  Google Scholar 

  16. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001; 86 (12): 5992.

    Article  CAS  Google Scholar 

  17. Erickson JC, Hollopeter G, Palmiter RD . Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996; 274 (5293): 1704–1707.

    Article  CAS  Google Scholar 

  18. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG . Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 2000; 92 (1–3): 73–78.

    Article  CAS  Google Scholar 

  19. Maor G, Rochwerger M, Segev Y, Phillip M . Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 2002; 17 (6): 1034–1043.

    Article  CAS  Google Scholar 

  20. Catzeflis C, Pierroz DD, Rohner-Jeanrenaud F, Rivier JE, Sizonenko PC, Aubert ML . Neuropeptide Y administered chronically into the lateral ventricle profoundly inhibits both the gonadotropic and the somatotropic axis in intact adult female rats. Endocrinology 1993; 132 (1): 224–234.

    Article  CAS  Google Scholar 

  21. Raposinho PD, Pierroz DD, Broqua P, White RB, Pedrazzini T, Aubert ML . Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism. Mol Cell Endocrinol 2001; 185 (1–2): 195–204.

    Article  CAS  Google Scholar 

  22. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci USA 2004; 101 (13): 4661–4666.

    Article  CAS  Google Scholar 

  23. Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994; 371 (6500): 799–802.

    Article  CAS  Google Scholar 

  24. Wren AM, Small CJ, Fribbens CV, Neary NM, Ward HL, Seal LJ et al. The hypothalamic mechanisms of the hypophysiotropic action of ghrelin. Neuroendocrinology 2002; 76 (5): 316–324.

    Article  CAS  Google Scholar 

  25. Beak SA, Small CJ, Ilovaiskaia I, Hurley JD, Ghatei MA, Bloom SR et al. Glucagon-like peptide-1 (GLP-1) releases thyrotropin (TSH): characterization of binding sites for GLP-1 on alpha-TSH cells. Endocrinology 1996; 137 (10): 4130–4138.

    Article  CAS  Google Scholar 

  26. Carmignac DF, Gabrielsson BG, Robinson IC . Growth hormone binding protein in the rat: effects of gonadal steroids. Endocrinology 1993; 133 (6): 2445–2452.

    Article  CAS  Google Scholar 

  27. Martin NM, Small CJ, Sajedi A, Patterson M, Ghatei MA, Bloom SR . Pre-obese and obese agouti mice are sensitive to the anorectic effects of peptide YY(3–36) but resistant to ghrelin. Int J Obes Relat Metab Disord 2004; 28 (7): 886–893.

    Article  CAS  Google Scholar 

  28. Bennett PA, Levy A, Sophokleous S, Robinson IC, Lightman SL . Hypothalamic GH receptor gene expression in the rat: effects of altered GH status. J Endocrinol 1995; 147 (2): 225–234.

    Article  CAS  Google Scholar 

  29. Wells SE, Flavell DM, Bisset GW, Houston PA, Christian H, Fairhall KM et al. Transgenesis and neuroendocrine physiology: a transgenic rat model expressing growth hormone in vasopressin neurones. J Physiol 2003; 551 (Part 1): 323–336.

    Article  CAS  Google Scholar 

  30. Wells T, Houston PA . Skeletal growth acceleration with growth hormone secretagogues in transgenic growth retarded rats: pattern-dependent effects and mechanisms of desensitization. J Neuroendocrinol 2001; 13 (6): 496–504.

    Article  CAS  Google Scholar 

  31. Yen TT, Greenberg MM, Yu PL, Pearson DV . An analysis of the relationships among obesity, plasma insulin and hepatic lipogenic enzymes in ‘viable yellow obese’ mice (Avy/a). Horm Metab Res 1976; 8 (3): 159–166.

    Article  CAS  Google Scholar 

  32. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1 (11): 1155–1161.

    Article  CAS  Google Scholar 

  33. Correia ML, Haynes WG, Rahmouni K, Morgan DA, Sivitz WI, Mark AL . The concept of selective leptin resistance: evidence from agouti yellow obese mice. Diabetes 2002; 51 (2): 439–442.

    Article  CAS  Google Scholar 

  34. Heston WE, Vlahakis G . Influence of the Ay gene on mammary-gland tumours, hepatomas and normal growth in mice. J Nat Cancer Inst 1961; 26: 969–983.

    CAS  PubMed  Google Scholar 

  35. Wolff GL, Kodell RL, Kaput JA, Visek WJ . Caloric restriction abolishes enhanced metabolic efficiency induced by ectopic agouti protein in yellow mice. Proc Soc Exp Biol Med 1999; 221 (2): 99–104.

    Article  CAS  Google Scholar 

  36. Mendel VE . Influence of the insulin-to-growth hormone ratio on body composition of mice. Am J Physiol 1980; 238 (3): E231–E234.

    CAS  PubMed  Google Scholar 

  37. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML . Circulating ghrelin levels are decreased in human obesity. Diabetes 2001; 50 (4): 707–709.

    Article  CAS  Google Scholar 

  38. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS et al. Inhibition of food intake in obese subjects by peptide YY3–36. N Engl J Med 2003; 349 (10): 941–948.

    Article  CAS  Google Scholar 

  39. Haqq AM, Farooqi IS, O'Rahilly S, Stadler DD, Rosenfeld RG, Pratt KL et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader–Willi syndrome. J Clin Endocrinol Metab 2003; 88 (1): 174–178.

    Article  CAS  Google Scholar 

  40. Kesterson RA, Huszar D, Lynch CA, Simerly RB, Cone RD . Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the agouti obesity syndrome. Mol Endocrinol 1997; 11 (5): 630–637.

    Article  CAS  Google Scholar 

  41. Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T . Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 1998; 402 (4): 460–474.

    Article  CAS  Google Scholar 

  42. Hahn TM, Breininger JF, Baskin DG, Schwartz MW . Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1 (4): 271–272.

    Article  CAS  Google Scholar 

  43. Tsuruta Y, Yoshimatsu H, Hidaka S, Kondou S, Okamoto K, Sakata T . Hyperleptinemia in A(y)/a mice upregulates arcuate cocaine- and amphetamine-regulated transcript expression. Am J Physiol Endocrinol Metab 2002; 282 (4): E967–E973.

    Article  CAS  Google Scholar 

  44. Rettori V, Milenkovic L, Aguila MC, McCann SM . Physiologically significant effect of neuropeptide Y to suppress growth hormone release by stimulating somatostatin discharge. Endocrinology 1990; 126 (5): 2296–2301.

    Article  CAS  Google Scholar 

  45. Korbonits M, Little JA, Forsling ML, Tringali G, Costa A, Navarra P et al. The effect of growth hormone secretagogues and neuropeptide Y on hypothalamic hormone release from acute rat hypothalamic explants. J Neuroendocrinol 1999; 11 (7): 521–528.

    Article  CAS  Google Scholar 

  46. Nguyen-Yamamoto L, Deal CL, Finkelstein JA, Van Vliet G . Hormonal control of growth in the genetically obese Zucker rat. I. Linear growth, plasma insulin-like growth factor-I (IGF-I) and IGF-binding proteins. Endocrinology 1994; 134 (3): 1382–1388.

    Article  CAS  Google Scholar 

  47. De Schepper JA, Smitz JP, Zhou XL, Louis O, Velkeniers BE, Vanhaelst L . Cafeteria diet-induced obesity is associated with a low spontaneous growth hormone secretion and normal plasma insulin-like growth factor-I concentrations. Growth Horm IGF Res 1998; 8 (5): 397–401.

    Article  CAS  Google Scholar 

  48. Johnson TR, Blossey BK, Denko CW, Ilan J . Expression of insulin-like growth factor I in cultured rat hepatocytes: effects of insulin and growth hormone. Mol Endocrinol 1989; 3 (3): 580–587.

    Article  CAS  Google Scholar 

  49. Yasunaga T, Furukawa S, Katsumata N, Horikawa R, Tanaka T, Tanae A et al. Nutrition related hormonal changes in obese children. Endocr J 1998; 45 (2): 221–227.

    Article  CAS  Google Scholar 

  50. Frigeri LG, Wolff GL, Teguh C . Differential responses of yellow Avy/A and agouti A/a (BALB/c X VY) F1 hybrid mice to the same diets: glucose tolerance, weight gain, and adipocyte cellularity. Int J Obes Relat Metab Disord 1988; 12 (4): 305–320.

    CAS  Google Scholar 

  51. Levin BE . Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am J Physiol 1999; 276 (2) (Part 2): R382–R387.

    CAS  PubMed  Google Scholar 

  52. Levin BE, Dunn-Meynell AA . Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2002; 283 (4): R941–R948.

    Article  Google Scholar 

  53. Zhou X, De Schepper J, Vergeylen A, Luis O, Delhase M, Hooghe-Peters EL . Cafeteria diet-induced obese rats have an increased somatostatin protein content and gene expression in the periventricular nucleus. J Endocrinol Invest 1997; 20 (5): 264–269.

    Article  CAS  Google Scholar 

  54. Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 1996; 45 (4): 531–535.

    Article  CAS  Google Scholar 

  55. Carro E, Senaris RM, Seoane LM, Frohman LA, Arimura A, Casanueva FF et al. Role of growth hormone (GH)-releasing hormone and somatostatin on leptin-induced GH secretion. Neuroendocrinology 1999; 69 (1): 3–10.

    Article  CAS  Google Scholar 

  56. Bagnol D, Lu XY, Kaelin CB, Day HE, Ollmann M, Gantz I et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 1999; 19 (18): RC26.

    Article  CAS  Google Scholar 

  57. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD . Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994; 8 (10): 1298–1308.

    CAS  Google Scholar 

  58. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141 (9): 3518–3521.

    Article  CAS  Google Scholar 

  59. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26 (1): 97–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These data have been published in abstract form at the British Endocrine Society, 2004. We thank KG Murphy for helpful comments during the preparation of the manuscript. NMM is a Wellcome Trust Clinical Training Fellow. This work is supported by an MRC programme Grant G7811974 (Bloom, Ghatei and Small).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, N., Houston, P., Patterson, M. et al. Abnormalities of the somatotrophic axis in the obese agouti mouse. Int J Obes 30, 430–438 (2006). https://doi.org/10.1038/sj.ijo.0803076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803076

Keywords

This article is cited by

Search

Quick links