Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air

Abstract

Covalent organic frameworks (COFs) with ordered π skeletons and aligned nanopores could be ideal photocatalytic materials but remain unexplored for this use. Here we report hexavalent photocatalytic COFs for efficient photosynthesis via systematic design of the π skeletons and pores. The framework of the photocatalysts have donor-alt-acceptor arrangements and upon irradiation are converted into catalytic scaffolds, which have dense catalytic sites for oxygen reduction and water oxidation and spatially segregated donor and acceptor columns for hole and electron separation to prevent charge recombination and enable rapid charge transport. The pore walls are engineered to be hydrophilic to enable water and dissolved oxygen to pass through the one-dimensional channel to reach the catalytic sites via capillary effect. The COFs act as a photocatalyst for the photosynthesis of H2O2 using only water, air and light, attaining a high production rate of 7.2 mmol g–1 h–1, optimal apparent quantum yield of 18.0% and solar-to-chemical conversion efficiency of 0.91% in bath reactors. Flow reactors incorporating these COFs can continuously produce pure H2O2 solution, yielding over 15 litres under ambient conditions, and exhibit exceptional operational stability over 2 weeks of use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of photocatalytic COFs for H2O2 manufacturing.
Fig. 2: Two-dimensional donor-alt-acceptor skeletons and stacking structures.
Fig. 3: Chemical and crystal structures.
Fig. 4: Photophysical and electrochemical properties.
Fig. 5: Hydrogen bonds and frontier orbitals.
Fig. 6: Tailor-made 1D channels and vapour sorption.
Fig. 7: Photocatalysis and active sites.
Fig. 8: In situ study.

Similar content being viewed by others

Data availability

Source Data are provided with this paper. All other data supporting the finding of this study are available within this article and its Supplementary Information. The atomic coordinates for the final optimized structures are provided as Supplementary Data 14.

References

  1. Shaegh, S. A. M., Nguyen, N.-T., Ehteshami, S. M. M. & Chan, S. H. A membraneless hydrogen peroxide fuel cell using Prussian blue as cathode material. Energy Environ. Sci. 5, 8225–8228 (2012).

    Article  Google Scholar 

  2. Fukuzumi, S., Yamada, Y. & Karlin, K. D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim. Acta 82, 493–511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamada, Y., Fukunishi, Y., Yamazaki, S.-i & Fukuzumi, S. Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell. Chem. Comm. 46, 7334–7336 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Wen, Y. et al. Electrochemical reactors for continuous decentralized H2O2 production. Angew. Chem. Int. Ed. 61, e202205972 (2022).

    Article  CAS  Google Scholar 

  6. Chang, J.-N. et al. Oxidation–reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2. Angew. Chem. Int. Ed. 62, e202218868 (2023).

    Article  CAS  Google Scholar 

  7. Zhi, Q. et al. Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2 photosynthesis. J. Am. Chem. Soc. 144, 21328–21336 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Hou, H., Zeng, X. & Zhang, X. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).

    Article  CAS  Google Scholar 

  9. Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, L. et al. Linear conjugated polymers for solar-driven hydrogen peroxide production: the importance of catalyst stability. J. Am. Chem. Soc. 143, 19287–19293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teng, Z. Y. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article  CAS  Google Scholar 

  12. Wu, C. B. et al. Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water. Adv. Mater. 34, adma.202110266 (2022).

  13. Kou, M. P. et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61, e.202200413 (2022).

    Article  Google Scholar 

  14. Chu, C. H. et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl Acad. Sci. USA 117, 6376–6382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krishnaraj, C. et al. Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 142, 20107–20116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, D. et al. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 62, e202217479 (2023).

    Article  CAS  Google Scholar 

  17. Chen, L. et al. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: a new two-electron water oxidation pathway. Adv. Mater. 32, 1904433 (2020).

    Article  CAS  Google Scholar 

  18. Zeng, X. et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal. 10, 3697–3706 (2020).

    Article  CAS  Google Scholar 

  19. Segura, J. L., Mancheño, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Z., Zhang, S., Chen, Y., Zhang, Z. & Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49, 708–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Haase, F. & Lotsch, B. V. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49, 8469–8500 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, G.-B. et al. Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. J. Mater. Chem. A 8, 6957–6983 (2020).

    Article  CAS  Google Scholar 

  23. Wang, H. et al. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 49, 4135–4165 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Ascherl, L. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 8, 310–316 (2016).

    Article  CAS  Google Scholar 

  25. Xu, X. et al. Pore partition in two-dimensional covalent organic frameworks. Nat. Commun. 14, 3360 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, X., Cai, P., Chen, H., Zhou, H.-C. & Huang, N. Three-dimensional covalent organic frameworks with she topology. J. Am. Chem. Soc. 144, 18511–18517 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Gui, B. et al. Crystallization of dimensional isomers in covalent organic frameworks. J. Am. Chem. Soc. 145, 11276–11281 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Gui, B. et al. Tailoring the pore surface of 3D covalent organic frameworks via post-synthetic click chemistry. Angew. Chem. Int. Ed. 61, e202113852 (2022).

    Article  CAS  Google Scholar 

  29. Liu, R. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. He, T. et al. Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water. Nat. Commun. 14, 329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tao, S. & Jiang, D. Covalent organic frameworks for energy conversions: current status, challenges, and perspectives. CCS Chem. 3, 2003–2024 (2021).

    Article  CAS  Google Scholar 

  32. He, T., Geng, K. & Jiang, D. Engineering covalent organic frameworks for light-driven hydrogen production from water. ACS Materials Lett. 1, 203–208 (2019).

    Article  CAS  Google Scholar 

  33. Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Prime. 3, 1–19 (2023).

    Article  CAS  Google Scholar 

  34. Deng, L., Ding, Z., Ye, X. & Jiang, D. Covalent organic frameworks: chemistry of pore interface and wall surface perturbation and impact on functions. Acc. Mater. Res. 3, 879–893 (2022).

    Article  CAS  Google Scholar 

  35. Jiang, D. Covalent organic frameworks: an amazing chemistry platform for designing polymers. Chem 6, 2461–2483 (2020).

    Article  CAS  Google Scholar 

  36. Feng, S. et al. Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chem. Comm. 53, 11334–11337 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H., Yang, C., Chen, F., Zheng, G. & Han, Q. A crystalline partially fluorinated triazine covalent organic framework for efficient photosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202202328 (2022).

    Article  CAS  Google Scholar 

  38. Sun, J. et al. Metal–organic frameworks and covalent organic frameworks as photocatalysts for H2O2 production from oxygen and water. J. Mater. Chem. A 11, 21516–21540 (2023).

    Article  CAS  Google Scholar 

  39. Deng, M. et al. Extending the π-conjugation system of covalent organic frameworks for more efficient photocatalytic H2O2 production. Green Chem. 25, 3069–3076 (2023).

    Article  CAS  Google Scholar 

  40. Chen, H., Jena, H. S., Feng, X., Leus, K. & Van Der Voort, P. Engineering covalent organic frameworks as heterogeneous photocatalysts for organic transformations. Angew. Chem. Int. Ed. 61, e202204938 (2022).

    Article  CAS  Google Scholar 

  41. Wang, L. et al. Understanding photocatalytic hydrogen peroxide production in pure water for benzothiadiazole-based covalent organic frameworks. Catal. Sci. Technol. 13, 6463–6471 (2023).

    Article  CAS  Google Scholar 

  42. Cheng, H. et al. Rational design of covalent heptazine frameworks with spatially separated redox centers for high‐efficiency photocatalytic hydrogen peroxide production. Adv. Mater. 34, 2107480 (2022).

    Article  CAS  Google Scholar 

  43. Zhai, L. et al. Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production. Chem. Mater. 34, 5232–5240 (2022).

    Article  CAS  Google Scholar 

  44. Chang, J.-N. et al. Regulation of redox molecular junctions in covalent organic frameworks for H2O2 photosynthesis coupled with biomass valorization. Angew. Chem. Int. Ed. 62, e202303606 (2023).

    Article  Google Scholar 

  45. Yong, Z. & Ma, T. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202308980 (2023).

    Article  CAS  Google Scholar 

  46. Liu, R. et al. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024).

    Article  CAS  Google Scholar 

  47. Sun, J. et al. Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. 62, e202216719 (2023).

    Article  CAS  Google Scholar 

  48. He, T. & Zhao, Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew. Chem. Int. Ed. 62, e202303086 (2023).

    Article  CAS  Google Scholar 

  49. Jin, E. et al. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 7, 3309–3324 (2021).

    Article  CAS  Google Scholar 

  50. He, T. et al. Bottom-up interfacial design of covalent organic frameworks for highly efficient and selective electrocatalysis of CO2. Adv. Mater. 34, 2205186 (2022).

    Article  CAS  Google Scholar 

  51. Tan, K. T., Tao, S., Huang, N. & Jiang, D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat. Commun. 12, 6747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun, C. et al. 2D covalent organic framework for water harvesting with fast kinetics and low regeneration temperature. Angew. Chem. Int. Ed. 62, e202217103 (2023).

    Article  CAS  Google Scholar 

  53. Li, J. et al. Covalent organic frameworks: reversible 3D coalesce via interlocked skeleton–pore actions and impacts on π electronic structures. J. Am. Chem. Soc. 145, 26383–26392 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Bunck, D. N. & Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135, 14952–14955 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Stegbauer, L., Schwinghammer, K. & Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014).

    Article  CAS  Google Scholar 

  56. Briega-Martos, V., Cheuquepán, W. & Feliu, J. M. Detection of superoxide anion oxygen reduction reaction intermediate on Pt(111) by infrared reflection absorption spectroscopy in neutral pH conditions. J. Phys. Chem. Lett. 12, 1588–1592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith, B. C. Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, 2011).

  58. Berthomieu, C. & Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101, 157–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Voraberger, H., Ribitsch, V., Janotta, M. & Mizaikoff, B. Application of mid-infrared spectroscopy: measuring hydrogen peroxide concentrations in bleaching baths. Appl. Spectrosc. 57, 574–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Giguère, P. A. The infra‐red spectrum of hydrogen peroxide. J. Chem. Phys. 18, 88–92 (1950).

    Article  Google Scholar 

  61. Żegli´nski, J., Piotrowski, G. P. & Pięks´, R. A study of interaction between hydrogen peroxide and silica gel by FTIR spectroscopy and quantum chemistry. J. Mol. Struct. 794, 83–91 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

D.J. gratefully acknowledges funding from Singapore MOE Tier 2 grants (T2EP10220-0004 and T2EP10221-0012), Singapore MOE Tier 1 grants (A-0008368-00-00 and A-0008369-00-00) and a Singapore A*STAR grant (U2102d2004). T.C.S. gratefully acknowledges funding from Singapore MOE Tier 2 grants (MOE2019-T2-1-097 and MOE-T2EP50120-0004) and a National Research Foundation Singapore NRF Investigatorship (NRF-NRFI-2018-04). We thank J.W. for the use of a flow pump, N.Y. for DRIFTS, L.Q. for the measurement of contact angle and C.X. for providing the g-C3N4 sample.

Author information

Authors and Affiliations

Authors

Contributions

D.J. conceived the idea and led the project. Y.C. and R.L. conducted the experiments and measurements. Y.G. and T.C.S. conducted the transient absorption measurements. G.W. and W.Y. performed the calculations. Y.C., R.L., Y.G., G.W., T.C.S., S.W.Y. and D.J. interpreted the results and Y.C. and D.J. wrote the paper. All authors have read and commented on the paper.

Corresponding author

Correspondence to Donglin Jiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Peer review

Peer review information

Nature Synthesis thanks Pascal Van Der Voort and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Electrostatic potential distribution.

a–c, Electrostatic potential maps for TP-DPBD1O-COF (a), TP-DPBD2O-COF (b) and TP-DPBD3O-COF (c).

Extended Data Fig. 2 Photocatalytic pathway.

a, Active site of diphenylbutadiyne linker for oxygen reduction reaction. b, Photocatalytic cycle for oxygen reduction reaction over butadiyne unit of the linker. c, Active site for water oxidation reaction at the triphenylene knot. d, Photocatalytic cycle for water oxidation over the phenyl unit of the knot.

Supplementary Information

Supplementary Information

Materials and methods, synthetic procedures, Supplementary Tables 1–6 and Figs. 1–60.

Supplementary Video

Supplementary Videos 1–4

Supplementary Data 1

Refined crystal structure of TP-DPBD1O-COF.

Supplementary Data 2

Refined crystal structure of TP-DPBD1O-COF.

Supplementary Data 3

Refined crystal structure of TP-DPBD3O-COF.

Supplementary Data 4

Refined crystal structure of TP-QPh-COF.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, R., Guo, Y. et al. Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00542-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing