Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of N–X anomeric amides as electrophilic halogenation reagents

Abstract

Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N–X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrophilic halogenation is a useful C–H functionalization tool: state of the art and design of reagents based on anomeric amides.
Fig. 2: Application of 6 and 7 in other reactivity modes and flow chemistry.
Fig. 3: DFT calculation-based mechanistic study.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 2270492 (5), 2238041 (6), 2252734 (7), 2247860 (16-Cl), 2287564 (28-Cl), 2252735 (34-Cl), 2263724 (38-Cl), 2255203 (39-Cl), 2287572 (3-Br), 2263723 (23-Br), 2257302 (25-Br), 2261009 (38-Br), 2278375 (39-Br) and 2261010 (43-Br). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Campeau, L.-C. & Hazari, N. Cross-coupling and related reactions: connecting past success to the development of new reactions for the future. Organometallics 38, 3–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, B. R., Eastman, C. M. & Njardarson, J. T. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem. 57, 9764–9773 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Hernandes, M. Z., Cavalcanti, S. M., Moreira, D. R., de Azevedo Junior, W. F. & Leite, A. C. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets 11, 303–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chiodi, D. & Ishihara, Y. “Magic chloro”: profound effects of the chlorine atom in drug discovery. J. Med. Chem. 66, 5305–5331 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Curtin, M. L. et al. Diaminopyrimidines as dual inhibitors of KDR and Aurora B kinases. Bioorg. Med. Chem. Lett. 22, 4750–4755 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Chong, P. et al. Rational design of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Med. Chem. 55, 10601–10619 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, R. Electrophilic Aromatic Substitution (Wiley, 1990).

  8. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Moir, M., Danon, J. J., Reekie, T. A. & Kassiou, M. An overview of late-stage functionalization in today’s drug discovery. Expert Opin. Drug Discov. 14, 1137–1149 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Article  Google Scholar 

  12. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  14. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, X., Hao, X.-S., Goodhue, C. E. & Yu, J.-Q. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem. Soc. 128, 6790–6791 (2006).

  17. Das, R. & Kapur, M. Transition-metal-catalyzed site-selective C–H halogenation reactions. Asian J. Org. Chem. 7, 1524–1541 (2018).

  18. Murphy, J. M., Liao, X. & Hartwig, J. F. Meta halogenation of 1,3-disubstituted arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 129, 15434–15435 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Boyle, B. T., Levy, J. N., de Lescure, L., Paton, R. S. & McNally, A. Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378, 773–779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao, H., Cheng, Q. & Studer, A. Radical and ionic meta-C–H functionalization of pyridines, quinolines, and isoquinolines. Science 378, 779–785 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Ni, S. et al. Nickel meets aryl thianthrenium salts: Ni(I)-catalyzed halogenation of arenes. J. Am. Chem. Soc. 145, 9988–9993 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Höfler, G. T., But, A. & Hollmann, F. Haloperoxidases as catalysts in organic synthesis. Org. Biomol. Chem. 17, 9267–9274 (2019).

    Article  PubMed  Google Scholar 

  24. Crowe, C. et al. Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation. Chem. Soc. Rev. 50, 9443–9481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Attanasi, O. A. et al. Tetrabromo hydrogenated cardanol: efficient and renewable brominating agent. Org. Lett. 8, 4291–4293 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez, R. A. et al. Palau’chlor: a practical and reactive chlorinating reagent. J. Am. Chem. Soc. 136, 6908–6911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, Z. et al. CFBSA: a novel and practical chlorinating reagent. Chem. Commun. 51, 14852–14855 (2015).

    Article  CAS  Google Scholar 

  28. Zhang, Y., Shibatomi, K. & Yamamoto, H. Lewis acid catalyzed highly selective halogenation of aromatic compounds. Synlett 2005, 2837–2842 (2005).

    Google Scholar 

  29. Mo, F. et al. Gold-catalyzed halogenation of aromatics by N-halosuccinimides. Angew. Chem. Int. Ed. 49, 2028–2032 (2010).

  30. Wang, W. et al. Catalytic electrophilic halogenation of arenes with electron-withdrawing substituents. J. Am. Chem. Soc. 144, 13415–13425 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Maddox, S. M., Nalbandian, C. J., Smith, D. E. & Gustafson, J. L. A practical Lewis base catalyzed electrophilic chlorination of arenes and heterocycles. Org. Lett. 17, 1042–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Samanta, R. C. & Yamamoto, H. Selective halogenation using an aniline catalyst. Chem. Eur. J. 21, 11976–11979 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Song, S. et al. DMSO-catalysed late-stage chlorination of (hetero)arenes. Nat. Catal. 3, 107–115 (2020).

    Article  CAS  Google Scholar 

  34. Gerdes, R. G., Glover, S. A., ten Have, J. F. & Rowbottom, C. A. N-acetoxy-N-alkoxyamides – a new class of nitrenium ion precursors which are mutagenic. Tetrahedron Lett. 30, 2649–2652 (1989).

  35. Glover, S. A. Anomeric amides—structure, properties and reactivity. Tetrahedron 54, 7229–7271 (1998).

    Article  CAS  Google Scholar 

  36. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Qi, T. et al. Iron(II)-catalyzed nitrene transfer reaction of sulfoxides with N-acyloxyamides. Org. Lett. 24, 5674–5678 (2022).

  38. Sutton, A. D., Williamson, M., Weismiller, H. & Toscano, J. P. Optimization of HNO production from N,O-bis-acylated hydroxylamine derivatives. Org. Lett. 14, 472–475 (2012).

  39. Beebe, T. R. & Wolfe, J. W. N-bromination of amides, imides, and sulfonamides with acetyl hypobromite. J. Org. Chem. 35, 2056–2057 (1970).

    Article  CAS  Google Scholar 

  40. Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    Article  CAS  Google Scholar 

  41. Kruszyk, M., Jessing, M., Kristensen, J. L. & Jørgensen, M. Computational methods to predict the regioselectivity of electrophilic aromatic substitution reactions of heteroaromatic systems. J. Org. Chem. 81, 5128–5134 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Korganow, A.-S., Eftekhari, P., Wagner, A. & Baehr, C. Analogues of hydroxychloroquine (HCQ) without retinal toxicity. US patent 201,906,227,878 A1 (2019).

  43. Regnier, G., Canevari, R. J., Laubie, M. J. & Le Douarec, J. C. Synthesis and vasodilator activity of new piperazine derivatives. J. Med. Chem. 11, 1151–1155 (1968).

    Article  CAS  PubMed  Google Scholar 

  44. Rohrig, S. Substituted oxazolidinones and the use thereof. US patent 20100184767 A1 (2010).

  45. Esumi, N., Suzuki, K., Nishimoto, Y. & Yasuda, M. Generation of α-iminyl radicals from α-bromo cyclic N-sulfonylimines and application to coupling with various radical acceptors using a photoredox catalyst. Chem. Eur. J. 24, 312–316 (2018).

  46. Kim, C.-S. et al. Determination of the absolute configuration of (+)-2,7(14),10-bisabolatrien-1-ol-4-one from Japanese cedar, Cryptomeria japonica. Biosci. Biotechnol. Biochem. 66, 1997–2000 (2002).

  47. Kobayashi, K. et al. Total synthesis of highly oxygenated bisabolane sesquiterpene isolated from Ligularia lankongensis: relative and absolute configurations of the natural product. J. Org. Chem. 83, 703–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Bodman, G. T. & Chervin, S. Use of ARC in screening for explosive properties. J. Hazard. Mater. 115, 101–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Bilke, M., Losch, P., Vozniuk, O., Bodach, A. & Schüth, F. Methane to chloromethane by mechanochemical activation: a selective radical pathway. J. Am. Chem. Soc. 141, 11212–11218 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Brown, R. N. The crystal structure of N-chlorosuccinimide. Acta Cryst. 14, 711–715 (1961).

    Article  CAS  Google Scholar 

  51. Beatty, J. W. et al. Discovery of potent and selective non-nucleotide small molecule inhibitors of CD73. J. Med. Chem. 63, 3935–3955 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Baloniak, S. & Katresiak, A. Synthesis and reactivity of some 1,2,4-triazolo[4,3-b]pyridazine derivatives. Pol. J. Chem. 68, 683–691 (1994).

    CAS  Google Scholar 

  53. Chen, C.-M., Chen, J.-X. & To, C. T. Solvent-free mechanochemical chlorination of pyrazoles with trichloroisocyanuric acid. Green Chem. 25, 2559–2562 (2023).

    Article  CAS  Google Scholar 

  54. Krake, E. F. & Baumann, W. Selective oxidation of clopidogrel by peroxymonosulfate (PMS) and sodium halide (NaX) system: an NMR study. Molecules 26, 5921–5932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Institutes of Health (grant no. GM-118176, P.S.B.). We thank D.-H. Huang and L. Pasternack (Scripps Research) for assistance with NMR spectroscopy; M. A. Schmidt (BMS) for insightful discussion on computational studies; M. Gembicky and E. Samolova (UCSD) for X-ray crystallographic analysis; and J. Chen, B. Sanchez and Q. N. Wong (Scripps Research ASF) for high-resolution mass spectrometry.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., C.B., Y.K., L.N.G. and P.S.B. conceptualized the study. Y.W. and C.B. developed the reagents and conducted reaction optimization. Y.W., C.B., M.D.P., M.R.C., M.S.O., C.C.T., D.C., E.A.L. and J.X.Q. contributed to the substrate scope and analysed the data. K.C.H. and A.V. designed and performed flow chemistry scale-up. L.N.G. performed the DFT calculations. L.S., P.F.R. and S.Z. performed the safety experiments. J.B.B. performed the X-ray crystallographic analysis. Y.W., C.B., Y.K., L.N.G., L.S., K.C.H. and P.S.B. wrote the paper. P.S.B. supervised this work. All authors contributed to discussions.

Corresponding author

Correspondence to Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–23, Schemes 1–3, experimental procedures, product characterization and NMR spectra.

Supplementary Data 1

Computational data.

Supplementary Data 2

Crystallographic data for compound 3-Br (CCDC reference 2287572).

Supplementary Data 3

Crystallographic data for compound 5 (CCDC reference 2270492).

Supplementary Data 4

Crystallographic data for compound 6 (CCDC reference 2238041).

Supplementary Data 5

Crystallographic data for compound 7 (CCDC reference 2252734).

Supplementary Data 6

Crystallographic data for compound 16-Cl (CCDC reference 2247860).

Supplementary Data 7

Crystallographic data for compound 23-Br (CCDC reference 2263723).

Supplementary Data 8

Crystallographic data for compound 25-Br (CCDC reference 2257302).

Supplementary Data 9

Crystallographic data for compound 28-Cl (CCDC reference 2287564).

Supplementary Data 10

Crystallographic data for compound 34-Cl (CCDC reference 2252735).

Supplementary Data 11

Crystallographic data for compound 38-Br (CCDC reference 2261009).

Supplementary Data 12

Crystallographic data for compound 38-Cl (CCDC reference 2263724).

Supplementary Data 13

Crystallographic data for compound 39-Br (CCDC reference 2278375).

Supplementary Data 14

Crystallographic data for compound 39-Cl (CCDC reference 2255203).

Supplementary Data 15

Crystallographic data for compound 43-Br (CCDC reference 2261010).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bi, C., Kawamata, Y. et al. Discovery of N–X anomeric amides as electrophilic halogenation reagents. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01539-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing