Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IKK/NF-κB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors

Abstract

E2Fs are key regulators of cell-cycle progression, and their transcriptional activities are regulated by histone acetyltransferases (HATs). Retinoblastoma (Rb) family proteins (pRb, p107 and p130) bind to E2Fs and inhibit their transcriptional activities by disrupting HAT binding and recruitment of histone deacetylases. In this study, we show that IκB kinases (IKKα or IKKβ) activation inhibits cell growth and E2F-dependent transcription in normal human fibroblasts. The inhibition of E2F by IKKs was not observed in cells lacking nuclear factor (NF)-κB/p65; however, it was observed in cells lacking three Rb family genes. p65 disrupted the physical interaction between activator E2Fs (F2F1, E2F2 and E2F3) and the HAT cofactor transactivation/transformation-domain associated protein, resulting in a reduction in E2F-responsive gene expression. Furthermore, IKKα and IKKβ directly phosphorylated E2F4, resulting in nuclear accumulation and enhanced DNA binding of the E2F4/p130 repressor complex. Our study describes a novel growth inhibitory system that functions by Rb-independent suppression of E2Fs by the IKK/NF-κB signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aggarwal BB . (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3: 745–756.

    Article  CAS  Google Scholar 

  • Aggarwal BB, Pocsik E, Totpal K, Ali-Osman F . (1995). Suppression of antiproliferative effects of tumor necrosis factor by transfection of cells with human platelet-derived growth factor B/c-sis gene. FEBS Lett 357: 1–6.

    Article  CAS  Google Scholar 

  • Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P et al. (2000). CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 19: 2430–2437.

    Article  CAS  Google Scholar 

  • Banno T, Gazel A, Blumenberg M . (2004). Effects of tumor necrosis factor-α (TNFα) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem 279: 32633–32642.

    Article  CAS  Google Scholar 

  • Boehm JS, Hession MT, Bulmer SE, Hahn WC . (2005). Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 25: 6464–6474.

    Article  CAS  Google Scholar 

  • Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F et al. (2001). Nuclear factor-κB (NF-κB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell 12: 1445–1455.

    Article  CAS  Google Scholar 

  • DeGregori J, Johnson DG . (2006). Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6: 739–748.

    CAS  PubMed  Google Scholar 

  • Delhase M, Hayakawa M, Chen Y, Karin M . (1999). Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284: 309–313.

    Article  CAS  Google Scholar 

  • Ferreira R, Naguibneva I, Pritchard LL, Ait-Si-Ali S, Harel-Bellan A . (2001). The Rb/chromatin connection and epigenetic control: opinion. Oncogene 20: 3128–3133.

    Article  CAS  Google Scholar 

  • Frolov MV, Dyson NJ . (2004). Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117: 2173–2181.

    Article  CAS  Google Scholar 

  • Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22: 2111–2123.

    Article  CAS  Google Scholar 

  • Huang WC, Ju TK, Hung MC, Chen CC . (2007). Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol Cell 26: 75–87.

    Article  Google Scholar 

  • Karin M . (2006). Nuclear factor-κB in cancer development and progression. Nature 441: 431–436.

    Article  CAS  Google Scholar 

  • Karin M, Ben-Neriah Y . (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621–663.

    Article  CAS  Google Scholar 

  • Lang SE, McMahon SB, Cole MD, Hearing P . (2001). E2F transcriptional activation requires TRRAP and GCN5 cofactors. J Biol Chem 276: 32627–32634.

    Article  CAS  Google Scholar 

  • Li Q, Verma IM . (2002). NF-κB regulation in the immune system. Nat Rev Immunol 2: 725–734.

    Article  CAS  Google Scholar 

  • Li Q, Withoff S, Verma IM . (2005). Inflammation-associated cancer: NF-κB is the lynchpin. Trends Immunol 26: 318–325.

    Article  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . (2000). Regulation of E2F1 activity by acetylation. EMBO J 19: 662–671.

    Article  CAS  Google Scholar 

  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M . (2000). E2F family members are differentially regulated by reversible acetylation. J Biol Chem 275: 10887–10892.

    Article  CAS  Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94: 363–374.

    Article  CAS  Google Scholar 

  • Pasparakis M, Courtois G, Hafner M, Schmidt-Supprian M, Nenci A, Toksoy A et al. (2002). TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417: 861–866.

    Article  CAS  Google Scholar 

  • Rowland BD, Bernards R . (2006). Re-evaluating cell-cycle regulation by E2Fs. Cell 127: 871–874.

    Article  CAS  Google Scholar 

  • Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA . (2000). Nuclear factor κB subunits induce epithelial cell growth arrest. Cancer Res 60: 4085–4092.

    CAS  Google Scholar 

  • Seitz CS, Lin Q, Deng H, Khavari PA . (1998). Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc Natl Acad Sci USA 95: 2307–2312.

    Article  CAS  Google Scholar 

  • Spyridopoulos I, Principe N, Krasinski KL, Xu S, Kearney M, Magner M et al (1998). Restoration of E2F expression rescues vascular endothelial cells from tumor necrosis factor-α-induced apoptosis. Circulation 98: 2883–2890.

    Article  CAS  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taubert S, Gorrini C, Frank SR, Parisi T, Fuchs M, Chan HM et al. (2004). E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol 24: 4546–4556.

    Article  CAS  Google Scholar 

  • Tergaonkar V, Correa RG, Ikawa M, Verma IM . (2005). Distinct roles of IκB proteins in regulating constitutive NF-κB activity. Nat Cell Biol 7: 921–923.

    Article  CAS  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    Article  CAS  Google Scholar 

  • Trouche D, Cook A, Kouzarides T . (1996). The CBP co-activator stimulates E2F1/DP1 activity. Nucleic Acids Res 24: 4139–4145.

    Article  CAS  Google Scholar 

  • Tu Z, Prajapati S, Park KJ, Kelly NJ, Yamamoto Y, Gaynor RB . (2006). IKKα regulates estrogen-induced cell cycle progression by modulating E2F1 expression. J Biol Chem 281: 6699–6706.

    Article  CAS  Google Scholar 

  • Wang CY, Mayo MW, Baldwin AS . (1996). TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274: 784–787.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Ikeda, K Ohtani, S Sugano, T Doi, MD Cole, G Leone, DV Goeddel, J Sage and T Jacks for providing the materials; K Tobiume, E Oda-Sato, Y Abe, I Uehara, W Nakajima and M Ando for the useful discussion, and Y Asano, H Hiroike and M Kawagoe for technical assistance. This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Tanaka.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, K., Kawauchi, K. & Tanaka, N. IKK/NF-κB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors. Oncogene 27, 5696–5705 (2008). https://doi.org/10.1038/onc.2008.184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.184

Keywords

This article is cited by

Search

Quick links