Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicting the emergence of antibiotic resistance by directed evolution and structural analysis

Abstract

Directed evolution can be a powerful tool to predict antibiotic resistance. Resistance involves the accumulation of mutations beneficial to the pathogen while maintaining residue interactions and core packing that are critical for preserving function. The constraint of maintaining stability, while increasing activity, drastically reduces the number of possible mutational combination pathways. To test this theory, TEM-1 β-lactamase was evolved using a hypermutator E. coli-based directed evolution technique with cefotaxime selection. The selected mutants were compared to two previous directed evolution studies and a database of clinical isolates. In all cases, evolution resulted in the generation of the E104K/M182T/G238S combination of mutations (500-fold increased resistance), which is equivalent to clinical isolate TEM-52. The structure of TEM-52 was determined to 2.4 Å. G238S widens access to the active site by 2.8 Å whereas E104K stabilizes the reorganized topology. The M182T mutation is located 17 Å from the active site and appears to be a global suppressor mutation that acts to stabilize the new enzyme structure. Our results demonstrate that directed evolution coupled with structural analysis can be used to predict future mutations that lead to increased antibiotic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of clinical and directed evolution mutation frequencies.
Figure 2: Trends in mutation combinations and order of appearance (other mutations are observed, see Fig 1).
Figure 3: Alternative views of the TEM-52 crystal structure.
Figure 4: Global suppressor mutation M182T found in TEM-52.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Stemmer, W.P. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  2. Zaccolo, M. & Gherardi, E. J. Mol. Biol. 285, 775–783 (1999).

    Article  CAS  Google Scholar 

  3. Jacoby, G. & Bush, K. http://www.lahey.org/studies/webt.htm (2000).

  4. Poyart, C., Mugnier, P., Quesne, G., Berche, P. & Trieu-Cuot, P. Antimicrob. Agents Chemother. 42, 108–113 (1998).

    Article  CAS  Google Scholar 

  5. Giakkoupi, P., Tzelepi, E., Tassios, P.T., Legakis, N.J. & Tzouvelekis, L. S. J. Antimicrob. Chemother. 45, 101–104 (2000).

    Article  CAS  Google Scholar 

  6. Skandalis, A., Encell, L.P. & Loeb, L.A. Chem. Biol. 4, 889–898 (1997).

    Article  CAS  Google Scholar 

  7. Echols, H., Lu, C. & Burgers, P.M. J. Proc. Natl. Acad. Sci. USA 80, 2189–2192 (1983).

    Article  CAS  Google Scholar 

  8. Low, N.M., Holliger, P.H. & Winter, G. J. Mol. Biol . 260, 359–368 (1996).

    Article  CAS  Google Scholar 

  9. Knox, J. Antimicrob. Agents Chemother. 39, 2593–2601 (1995).

    Article  CAS  Google Scholar 

  10. Matagne, A., Lamotte-Brasseur, J. & Frere, J.M. Biochem. J. 330, 581–598 (1998).

    Article  CAS  Google Scholar 

  11. Raquet, X. et al. Proteins 23, 63–72 (1995).

    Article  CAS  Google Scholar 

  12. Du Bois, S.K., Marriott, M. S. & Amyes, S.G.B. J. Antimicrob. Chemother. 35, 7–22 (1995).

    Article  CAS  Google Scholar 

  13. Long-McGie, J., Liu, A.D. & Schellenberger, V. Biotechnol. Bioeng. 68, 121–125 (2000).

    Article  CAS  Google Scholar 

  14. Medeiros, A.A. Clin. Infect. Dis. 24 (Suppl. 1), S19–45 (1997).

    Article  CAS  Google Scholar 

  15. Huang, W. & Palzkill, T. Proc. Natl. Acad. Sci. USA 94, 8801–8806 (1997).

    Article  CAS  Google Scholar 

  16. Farzaneh, S. et al. Antimicrob. Agents Chemother. 40, 2434–2436 (1996).

    Article  CAS  Google Scholar 

  17. Huang, W., Petrosino, J., Hirsch, M., Shenkin, P.S. & Palzkill, T. J. Mol. Biol. 258, 688–703 (1996).

    Article  CAS  Google Scholar 

  18. Yang, Y., Bhachech, N., Bradford, P.A., Jett, B.D., Sahm, D.F. & Bush, K. Antimicrob. Agents Chemother. 42,1671–1676 (1998).

    Article  CAS  Google Scholar 

  19. Aramli, L.A. & Teschke, C.M. J. Biol. Chem. 274, 22217–22224 (1999).

    Article  CAS  Google Scholar 

  20. Nikolova, P.V., Wong, K.B., DeDecker, B., Henckel, J. & Fersht, A.R. EMBO J. 19, 370–378 (2000).

    Article  CAS  Google Scholar 

  21. Vanhove, M., Lejeune, A. & Pain, R.H. Cell. Mol. Life Sci. 54, 372–377 (1998).

    Article  CAS  Google Scholar 

  22. Jelsch, C., Mourey, L., Masson, J. & Samama., J. Proteins 16, 364–383 (1993).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  24. Navaza, J. Acta. Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  25. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta. Crystallgr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond C. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orencia, M., Yoon, J., Ness, J. et al. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat Struct Mol Biol 8, 238–242 (2001). https://doi.org/10.1038/84981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing