Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integrative database analysis in structural genomics

Abstract

An important aspect of structural genomics is connecting coordinate data with whole-genome information related to phylogenetic occurrence, protein function, gene expression, and protein–protein interactions. Integrative database analysis allows one to survey the 'finite parts list' of protein folds from many perspectives, highlighting certain folds and structural features that stand out in particular ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An example of structural genomics data integration is shown for yeast.
Figure 2: Results of an integrated database analysis on the relationship between fold, function and interactions and its implications for structural genomics.

Similar content being viewed by others

References

  1. Sonnhammer, E.L., Eddy, S.R., Birney, E., Bateman, A. & Durbin, R. Nucleic Acids Res. 26, 320– 322 (1998). http://www.sanger.ac.uk/Pfam

    Article  CAS  Google Scholar 

  2. Tatusov, R.L., Koonin, E.V. & Lipman, D.J. Science 278, 631– 637 (1997). http://www.ncbi.nlm.nih.gov/COG

    Article  CAS  Google Scholar 

  3. Yona, G., Linial, N. & Linial, M. Nucleic Acids Res 28, 49– 55 (2000). http://protomap.stanford.edu

    Article  CAS  Google Scholar 

  4. Holm, L. & Sander, C. Nucleic Acids Res. 22 , 3600–3609 (1994). http://www.ebi.ac.uk/dali/fssp

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Murzin, A., Brenner, S.E., Hubbard, T. & Chothia, C. J. Mol. Biol. 247, 536–540 (1995). http://scop.mrc-lmb.cam.ac.uk/scop

    CAS  PubMed  Google Scholar 

  6. Orengo, C.A. et al. Structure 5, 1093– 1108 (1997). http://www.biochem.ucl.ac.uk/bsm/cath

    Article  CAS  Google Scholar 

  7. Brenner, S.E., Chothia, C. & Hubbard, T.J. Curr. Opin. Struct. Biol. 7, 369–376 (1997).

    Article  CAS  Google Scholar 

  8. Wolf, Y.I., Grishin, N.V. & Koonin, E.V. J. Mol. Biol. 299, 897– 905 (2000).

    Article  CAS  Google Scholar 

  9. Altschul, S., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. J. Mol. Biol. 215, 403– 410 (1990). http://www.ncbi.nlm.nih.gov/BLAST

    Article  CAS  Google Scholar 

  10. Pearson, W.R. J. Mol. Biol. 276, 71–84 (1998). http://fasta.bioch.virginia.edu

    Article  CAS  Google Scholar 

  11. Altschul, S.F. et al. Nucleic Acids Res. 25, 3389– 3402 (1997). http://www.ncbi.nlm.nih.gov/BLAST

    Article  CAS  Google Scholar 

  12. Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. J. Mol. Biol. 299, 523– 44 (2000). http://www.bmm.icnet.uk/~3dpssm

    Article  Google Scholar 

  13. Fischer, D. & Eisenberg, D. Curr. Opin. Struct. Biol. 9, 208–211 (1999). http://www.doe-mbi.ucla.edu/people/frsvr/preds/MG/MG.html

    Article  CAS  Google Scholar 

  14. Jones, D.T. J. Mol. Biol. 287, 797–815 (1999). (http://insulin.brunel.ac.uk/threader/threader.html)

    Article  CAS  Google Scholar 

  15. Gerstein, M. Folding & Design 3, 497–512 (1998). http://bioinfo.mbb.yale.edu/genecensus

    Article  CAS  Google Scholar 

  16. Gerstein, M. J. Mol. Biol. 274, 562–576 (1997). http://bioinfo.mbb.yale.edu/genome/browser

    Article  CAS  Google Scholar 

  17. Wolf, Y.I., Brenner, S.E., Bash, P.A. & Koonin, E.V. Genome Res. 9, 17–26 ( 1999). ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/FOLDS/index.html

    CAS  PubMed  Google Scholar 

  18. Lin, J. & Gerstein, M. Genome Res. 10, 808–818 (2000). http://bioinfo.mbb.yale.edu/genome/tree

    Article  CAS  Google Scholar 

  19. Gerstein, M. Proteins 33, 518–534 ( 1998). http://bioinfo.mbb.yale.edu/partslist

    Article  CAS  Google Scholar 

  20. Li, H., Dunn, J.J., Luft, B.J. & Lawson, C.L. Proc. Natl. Acad. Sci. USA 94, 3584–3589 ( 1997).

    Article  CAS  Google Scholar 

  21. Thornton, J.M., Orengo, C.A., Todd, A.E. & Pearl, F.M. J. Mol. Biol. 293, 333–342 ( 1999). http://www.biochem.ucl.ac.uk/bsm/cathwheels

    Article  CAS  Google Scholar 

  22. Karp, P.D., et al. Nucleic Acids Res. 28, 56– 59 (2000).(http://ecocyc.DoubleTwist.com/ecocyc)

    Article  CAS  Google Scholar 

  23. Mewes, H.W. et al. Nucleic Acids Res. 27, 44– 48 (1999). (http://www.mips.biochem.mpg.de)

    Article  CAS  Google Scholar 

  24. Ashburner, M. et al. Nature Genet. 25, 25– 29 (2000). http://geneontology.org

    Article  CAS  Google Scholar 

  25. Hegyi, H. & Gerstein, M. J. Mol. Biol. 288, 147–164 (1999). http://bioinfo.mbb.yale.edu/genome/foldfunc

    Article  CAS  Google Scholar 

  26. Martin, A.C. et al. Structure 6, 875–884 (1998). http://www.biochem.ucl.ac.uk/bsm/cathwheels

    Article  CAS  Google Scholar 

  27. Chothia, C. & Lesk, A.M. EMBO J. 5, 823–826 (1986).

    Article  CAS  Google Scholar 

  28. Wilson, C.A., Kreychman, J. & Gerstein, M. J. Mol. Biol. 297, 233– 249 (2000). http://bioinfo.mbb.yale.edu/partslist/scop

    Article  CAS  Google Scholar 

  29. Uetz, P. et al. Nature 403, 623–627 (2000). http://depts.washington.edu/sfields/projects/YPLM

    Article  CAS  Google Scholar 

  30. Lipshutz, R.J., Fodor, S.P., Gingeras, T.R. & Lockhart, D.J. Nature Genet 21, 20–24 ( 1999).

    Article  CAS  Google Scholar 

  31. Brown, P.O. & Botstein, D. Nature Genet. 21, 33–37 (1999). (http://genome-www4.stanford.edu/MicroArray/SMD)

    Article  CAS  Google Scholar 

  32. Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Mol Cell. Biol. 19, 1720–1730 ( 1999).

    Article  CAS  Google Scholar 

  33. Ross-Macdonald, P. et al. Nature 402, 413–418 (1999). http://www.yale.edu/snyder

    Article  CAS  Google Scholar 

  34. Jansen, R. & Gerstein, M. Nucleic Acids Res. 28, 1481–1488 (2000). http://bioinfo.mbb.yale.edu/genome/expression

    Article  CAS  Google Scholar 

  35. Holstege, F.C. et al. Cell 95, 717–28 (1998). http://web.wi.mit.edu/young/pub/regulation.html

    Article  CAS  Google Scholar 

  36. Frishman, D., Heumann, K., Lesk, A. & Mewes, H.W. Bioinformatics 14, 551–61 ( 1998).

    Article  CAS  Google Scholar 

  37. Etzold, T., Ulyanov, A. & Argos, P. Methods Enzymol. 266, 114– 128 (1996). http://srs6.ebi.ac.uk

    Article  CAS  Google Scholar 

  38. Westbrook, J.D. & Bourne, P.E. Bioinformatics 16, 159–168 ( 2000). http://ndbserver.rutgers.edu/mmcif

    Article  CAS  Google Scholar 

  39. Gerstein, M. Bioinformatics 15, 429–431 (1999).

    Article  CAS  Google Scholar 

  40. Park, J., Lappe, M., & Teichman, F. Trends Genet. in the press ( 2000).

Download references

Acknowledgements

Thanks are given to M. Schultz, N. Luscombe, D. Greenbaum, J. Junker, P. Bertone, W. Krebs, P. Miller, and K. Cheung for carefully reading the draft; to S. Teichmann and J. Park for helping with protein–protein interaction numbers for the figures; and to the NIH and Keck foundation for financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstein, M. Integrative database analysis in structural genomics. Nat Struct Mol Biol 7 (Suppl 11), 960–963 (2000). https://doi.org/10.1038/80739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/80739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing