Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bright prospects for biological non-crystalline diffraction

Abstract

Improved synchrotron sources provide new opportunities for the studying the structure and kinetics of biological materials using non-crystalline diffraction and small angle scattering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two side by side diffraction patterns from frog sartorius muscle in the resting state taken on the BioCAT beamline at the Advanced Photon Source.

Similar content being viewed by others

References

  1. Huxley H.E. The working stroke of myosin– crossbridges. Biophys., J. 68, 57–58 (1995).

    Google Scholar 

  2. Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno Y., Takezawa, Y. & Amemiya, Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during contraction. Biophys. J. 67, 2422– 2435 (1994).

    Article  CAS  Google Scholar 

  3. Huxley, H.E., Stewart, A. Sosa H., & Irving, T.C. X-ray diffraction measurements of the extensibility of the actin and myosin filaments in muscle. Biophys. J., 67, 2411– 2421 (1994).

    Article  CAS  Google Scholar 

  4. Irving, M., Lombardi, V., Piazzesi, G. & Ferenczi, M.A. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 357, 156– 158 (1992).

    Article  CAS  Google Scholar 

  5. Lorenz, M., Poole, KJV, Popp, D., Rosenbaum, G. & Holmes, K.C. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction of oriented actin-tropomyosin gels. J. Mol. Biol 246, 108–119 (1995).

    Article  CAS  Google Scholar 

  6. Rawe, I.M., Leonard, D.W., Meek, K.M. & Zabel, R.W. X-ray diffraction and transmission electron microscopy of Morquio syndrome type A cornea: A structural analysis. Cornea 16, 369–376 (1997).

    Article  CAS  Google Scholar 

  7. James, V.J., Yue, D.K. & McLennon, S.V. Changes in molecular structure of hair in insulin-dependent diabetes. BBRC 233:76–80 (1997).

    CAS  PubMed  Google Scholar 

  8. Misof, K., Rapp, G. & Fratzl, P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys. J. 72, 1376–1381 (1997).

    Article  CAS  Google Scholar 

  9. Laggner, P. & Kreichbaum, M. Phospholipid phase transitions: kinetics and structural mechanisms. Chem. Phys. Lipids 57, 121–145 (1991).

    Article  CAS  Google Scholar 

  10. Cheng, A., Hummel, B., Mencke, A. & Caffrey, M. Kinetics and mechanism of the barotropic lameller gel/lameller liquid crystal phase transition in fully hydrated dihexadecylphosphatidylethanolamine: a time resolved X-ray diffraction study using pressure jump. Biophys J. 67, 293–303 (1994).

    Article  CAS  Google Scholar 

  11. Koch, M.H. et al. Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J. 10, 521–526 (1997).

    Article  Google Scholar 

  12. Trewhella, J. Insights into biomolecular function from small-angle scattering. Curr. Opin. Struct. Biol. 7, 702–708 (1997).

    Article  CAS  Google Scholar 

  13. Meyer, D.F. et al. Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu(2+)-induced oxidation in relation to changes in lipid composition. Biochem J. 319, 217–27 (1996).

    Article  CAS  Google Scholar 

  14. Arai M. et al. Kinetic refolding of beta-lactoglobulin. Studies by synchrotron X-ray scattering, and circular dichroism, absorption and fluorescence spectroscopy. J Mol. Biol. 275:149– 62 (1998).

    Article  CAS  Google Scholar 

  15. Irving, T.C. & Huxley H.E. In Muscle diffraction at the Cornell high energy synchrotron source: synchrotron radiation and the biosciences (eds Chance, B. et al.) 519–529 (Oxford University Press, Oxford; 1994).

    Google Scholar 

  16. Tsuruta, H. et al. A wide bandpass monochromator for synchrotron radiation with small-angle and fiber diffraction applications. J. Appl. Crystallogr. in the press (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irving, T. Bright prospects for biological non-crystalline diffraction. Nat Struct Mol Biol 5 (Suppl 8), 648–650 (1998). https://doi.org/10.1038/1340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/1340

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing