Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The structure of purified kinetochores reveals multiple microtubule-attachment sites

Abstract

Chromosomes must be accurately partitioned to daughter cells to prevent aneuploidy, a hallmark of many tumors and birth defects. Kinetochores are the macromolecular machines that segregate chromosomes by maintaining load-bearing attachments to the dynamic tips of microtubules. Here, we present the structure of isolated budding-yeast kinetochore particles, as visualized by EM and electron tomography of negatively stained preparations. The kinetochore appears as an ~126-nm particle containing a large central hub surrounded by multiple outer globular domains. In the presence of microtubules, some particles also have a ring that encircles the microtubule. Our data, showing that kinetochores bind to microtubules via multivalent attachments, lay the foundation to uncover the key mechanical and regulatory mechanisms by which kinetochores control chromosome segregation and cell division.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetochore particles contain a central hub surrounded by a number of globular domains.
Figure 2: Kinetochore particles bound to taxol-stabilized microtubules.
Figure 3: Three-dimensional structures of two types of kinetochore particles bound to a microtubule.
Figure 4: Schematic of the proposed model of kinetochore architecture.

References

  1. Pfau, S.J. & Amon, A. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 13, 515–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Compton, D.A. Mechanisms of aneuploidy. Curr. Opin. Cell Biol. 23, 109–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheeseman, I.M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Takeuchi, K. & Fukagawa, T. Molecular architecture of vertebrate kinetochores. Exp. Cell Res. 318, 1367–1374 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. DeLuca, J.G. & Musacchio, A. Structural organization of the kinetochore-microtubule interface. Curr. Opin. Cell Biol. 24, 48–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Westermann, S., Drubin, D.G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Zinkowski, R.P., Meyne, J. & Brinkley, B.R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Joglekar, A.P. et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hofmann, C. et al. Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function. J. Cell Biol. 143, 1029–1040 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Welburn, J.P. et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16, 374–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanisch, A., Sillje, H.H. & Nigg, E.A. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J. 25, 5504–5515 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Asbury, C.L., Tien, J.F. & Davis, T.N. Kinetochores′ gripping feat: conformational wave or biased diffusion? Trends Cell Biol. 21, 38–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Schittenhelm, R.B. et al. Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116, 385–402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joglekar, A.P., Bloom, K. & Salmon, E.D. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 19, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welburn, J.P. & Cheeseman, I.M. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell 15, 645–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. McIntosh, J.R. et al. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135, 322–333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dong, Y., Vanden Beldt, K.J., Meng, X., Khodjakov, A. & McEwen, B.F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 9, 516–522 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnston, K. et al. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189, 937–943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brinkley, B.R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).

    Article  CAS  PubMed  Google Scholar 

  24. Jokelainen, P.T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44 (1967).

    Article  CAS  PubMed  Google Scholar 

  25. Roos, U.P. Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma 41, 195–220 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Rieder, C.L. The structure of cold stable kinetochore microtubules in metaphase PtK1 cells. Chromosoma 84, 145–158 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Miranda, J.J., De Wulf, P., Sorger, P.K. & Harrison, S.C. The yeast DASH complex forms closed rings on microtubules. Nat. Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Westermann, S. et al. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akiyoshi, B., Nelson, C.R., Ranish, J.A. & Biggins, S. Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev. 23, 2887–2899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wigge, P.A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Enquist-Newman, M. et al. Dad1p, third component of the Duo1p/Dam1p complex involved in kinetochore function and mitotic spindle integrity. Mol. Biol. Cell 12, 2601–2613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Tien, J.F. et al. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J. Cell Biol. 189, 713–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lampert, F., Hornung, P. & Westermann, S. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189, 641–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei, R.R., Sorger, P.K. & Harrison, S.C. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl. Acad. Sci. USA 102, 5363–5367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, H.W. et al. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 383, 894–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alushin, G.M. et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hill, T.L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. USA 82, 4404–4408 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Rose, M.D., Winston, F. & Heiter, P. Methods in Yeast Genetics, 198 (Cold Spring Harbor Laboratory Press, 1990).

  42. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Gelbart, M.E., Rechsteiner, T., Richmond, T.J. & Tsukiyama, T. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21, 2098–2106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol. Proced. Online 6, 23–34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stalling, D., Westerhoff, M. & Hege, H.-C. The Visualization Handbook (Elsevier, 2005).

  47. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Franck, A.D. et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat. Cell Biol. 9, 832–837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Biggins and Gonen laboratories for valuable discussions and for comments on the manuscript. We are also grateful to C. Asbury, A. Powers, B. Stoddard and J. Al-Bassam for discussion and comments on the manuscript. This work was supported by US National Institutes of Health grants (GM078079 and GM064386 to S.B.), a US National Cancer Institute Cancer Center Support grant (CA015704 to S.B.) and the Howard Hughes Medical Institute (T.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to designing the research. B.A., N.D. and S.B. performed the kinetochore purifications. S.G., M.G.I. and D.S. collected the EM data and did the EM analysis. S.B. and S.G. performed the microtubule-binding experiments. T.G. and S.B. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Sue Biggins or Tamir Gonen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–4 (PDF 1766 kb)

Supplementary Movie 1

Three-dimensional tomographic reconstructions of two representative kinetochore complexes bound to microtubules. (MPG 7994 kb)

Supplementary Movie 2

Three-dimensional tomographic reconstructions of two representative kinetochore complexes bound to microtubules. (MPG 16415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonen, S., Akiyoshi, B., Iadanza, M. et al. The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19, 925–929 (2012). https://doi.org/10.1038/nsmb.2358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing