Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome

Abstract

Viomycin and capreomycin belong to the tuberactinomycin family of antibiotics, which are among the most effective antibiotics against multidrug-resistant tuberculosis. Here we present two crystal structures of the 70S ribosome in complex with three tRNAs and bound to either viomycin or capreomycin at 3.3- and 3.5-Å resolution, respectively. Both antibiotics bind to the same site on the ribosome, which lies at the interface between helix 44 of the small ribosomal subunit and helix 69 of the large ribosomal subunit. The structures of these complexes suggest that the tuberactinomycins inhibit translocation by stabilizing the tRNA in the A site in the pretranslocation state. In addition, these structures show that the tuberactinomycins bind adjacent to the binding sites for the paromomycin and hygromycin B antibiotics, which may enable the development of new derivatives of tuberactinomycins that are effective against drug-resistant strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of the tuberactinomycins.
Figure 2: Binding site of viomycin and capreomycin.
Figure 3: Overlapping binding sites.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Guy, E.S. & Mallampalli, A. Managing TB in the 21st century: existing and novel drug therapies. Ther Adv Respir Dis 2, 401–408 (2008).

    Article  Google Scholar 

  2. Hugonnet, J.E., Tremblay, L.W., Boshoff, H.I., Barry, C.E. III & Blanchard, J.S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323, 1215–1218 (2009).

    Article  CAS  Google Scholar 

  3. Makarov, V. et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324, 801–804 (2009).

    Article  CAS  Google Scholar 

  4. WHO. Global tuberculosis control: epidemology, strategy, financing (WHO report 2009) 314 (World Health Organization, Geneva, Switzerland, 2009).

  5. Yamada, T., Mizugichi, Y., Nierhaus, K.H. & Wittmann, H.G. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275, 460–461 (1978).

    Article  CAS  Google Scholar 

  6. Thomas, M.G., Chan, Y.A. & Ozanick, S.G. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster. Antimicrob. Agents Chemother. 47, 2823–2830 (2003).

    Article  CAS  Google Scholar 

  7. Johansen, S.K., Maus, C.E., Plikaytis, B.B. & Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell 23, 173–182 (2006).

    Article  CAS  Google Scholar 

  8. Herr, E.B. Jr. & Redstone, M.O. Chemical and physical characterization of capreomycin. Ann. NY Acad. Sci. 135, 940–946 (1966).

    Article  CAS  Google Scholar 

  9. Modolell, J. & Vazquez, D. The inhibition of ribosomal translocation by viomycin. Eur. J. Biochem. 81, 491–497 (1977).

    Article  CAS  Google Scholar 

  10. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  11. Schmeing, T.M., Huang, K.S., Strobel, S.A. & Steitz, T.A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520–524 (2005).

    Article  CAS  Google Scholar 

  12. Voorhees, R.M., Weixlbaumer, A., Loakes, D., Kelley, A.C. & Ramakrishnan, V. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16, 528–533 (2009).

    Article  CAS  Google Scholar 

  13. Lancaster, L.E., Savelsbergh, A., Kleanthous, C., Wintermeyer, W. & Rodnina, M.V. Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol. Microbiol. 69, 390–401 (2008).

    Article  CAS  Google Scholar 

  14. Nomoto, S. & Shiba, T. Chemical studies on tuberactinomycin. XIII. Modification of β-ureidodehydroalanine residue in tuberactinomycin N. J. Antibiot. (Tokyo) 30, 1008–1011 (1977).

    Article  CAS  Google Scholar 

  15. Yamada, T., Teshima, T. & Shiba, T. Activity of di-β-lysyl-capreomycin IIA and palmitoyl tuberactinamine N against drug-resistant mutants with altered ribosomes. Antimicrob. Agents Chemother. 20, 834–836 (1981).

    Article  CAS  Google Scholar 

  16. von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S. & Habich, D. Antibacterial natural products in medicinal chemistry—exodus or revival? Angew. Chem. 45, 5072–5129 (2006).

    Article  CAS  Google Scholar 

  17. Monshupanee, T., Gregory, S.T., Douthwaite, S., Chungjatupornchai, W. & Dahlberg, A.E. Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications. J. Bacteriol. 190, 7754–7761 (2008).

    Article  CAS  Google Scholar 

  18. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  19. Ali, I.K., Lancaster, L., Feinberg, J., Joseph, S. & Noller, H.F. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol. Cell 23, 865–874 (2006).

    Article  CAS  Google Scholar 

  20. Kipper, K., Hetenyi, C., Sild, S., Remme, J. & Liiv, A. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity. J. Mol. Biol. 385, 405–422 (2009).

    Article  CAS  Google Scholar 

  21. O'Connor, M. Helix 69 in 23S rRNA modulates decoding by wild type and suppressor tRNAs. Mol. Genet. Genomics 282, 372–380 (2009).

    Google Scholar 

  22. Borovinskaya, M.A. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14, 727–732 (2007).

    Article  CAS  Google Scholar 

  23. Mears, J.A. et al. Modeling a minimal ribosome based on comparative sequence analysis. J. Mol. Biol. 321, 215–234 (2002).

    Article  CAS  Google Scholar 

  24. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  25. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).

    Article  CAS  Google Scholar 

  26. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).

    Article  CAS  Google Scholar 

  27. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684–19689 (2008).

    Article  CAS  Google Scholar 

  28. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

    Article  CAS  Google Scholar 

  29. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  Google Scholar 

  30. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  Google Scholar 

  31. Kim, H.D., Puglisi, J.D. & Chu, S. Fluctuations of transfer RNAs between classical and hybrid states. Biophys. J. 93, 3575–3582 (2007).

    Article  CAS  Google Scholar 

  32. Pan, D., Kirillov, S.V. & Cooperman, B.S. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25, 519–529 (2007).

    Article  CAS  Google Scholar 

  33. Ermolenko, D.N. et al. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  Google Scholar 

  34. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  Google Scholar 

  35. Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    Article  CAS  Google Scholar 

  36. Shoji, S., Walker, S.E. & Fredrick, K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4, 93–107 (2009).

    Article  CAS  Google Scholar 

  37. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G–dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  38. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  39. Borovinskaya, M.A., Shoji, S., Fredrick, K. & Cate, J.H. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14, 1590–1599 (2008).

    Article  CAS  Google Scholar 

  40. Szaflarski, W. et al. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193–205 (2008).

    Article  CAS  Google Scholar 

  41. Mayer, C. & RajBhandary, U.L. Conformational change of Escherichia coli initiator methionyl-tRNA(fMet) upon binding to methionyl-tRNA formyl transferase. Nucleic Acids Res. 30, 2844–2850 (2002).

    Article  CAS  Google Scholar 

  42. Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).

    Article  CAS  Google Scholar 

  43. Perona, J.J., Swanson, R., Steitz, T.A. & Soll, D. Overproduction and purification of Escherichia coli tRNA(2Gln) and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA(Gln) complex. J. Mol. Biol. 202, 121–126 (1988).

    Article  CAS  Google Scholar 

  44. Kabsch, W. XDS. in International Tables in Crystallography, vol. F (eds. Rossmann, M.G. & Arnold, E.) 730–734 (published for the International Union of Crystallography by Springer, Dordrecht, The Netherlands, 2005).

  45. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C. & Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  47. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  49. Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  50. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  51. Bycroft, B.W. Crystal structure of viomycin, a tuberculostatic antibiotic. JCS Chem. Commun. 660–661 (1972).

  52. Yoshioka, H. et al. Chemical studies on tuberactinomycin. II. Structure of tuberactinomycin O. Tetrahedr. Lett. 2043–2046 (1971).

  53. Bowers, K.J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (ACM/IEEE, 2006).

  54. Jorgensen, W.L., Maxwell, D.S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  55. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  56. DeLano, W.L. The PyMol Molecular Graphics System. (DeLano Scientific, Palo Alto, California, USA, 2002).

Download references

Acknowledgements

We thank the staffs at the Advanced Photon Source beamline 24-ID and at the National Synchrotron Light Source beamline X29 for help during data collection, the staff at the Center for Structural Biology at Yale University for computational support, I. Lomakin (Yale University) for providing us with methionyl-tRNA synthetase and U.L. RajBhandary (Massachusetts Institute of Technology), K.H. Nierhaus (Max-Planck-Institut für Molekulare Genetik), P. Nissen (Aarhaus University) and M. Sprinzl (University Bayreuth) for providing us with ET-Ts for the overexpression plasmids of methionyl-tRNA formyltransferase, initiator tRNA, EF-Tu and EF-Ts, respectively. This work was supported by the US National Institutes of Health grant GM 22778 to T.A.S.

Author information

Authors and Affiliations

Authors

Contributions

R.E.S. prepared and crystallized the complexes; R.E.S. and G.B. collected data and processed and refined X-ray data; G.B. and R.L.G. purified all components of complex; M.D.S. energy-minimized the initial tuberactinomycin structures and solved all computational problems related to the large size of the datasets and complexes; T.A.S., G.B. and R.E.S. contributed to the experimental design and analysis of the structure; T.A.S., G.B. and R.E.S. wrote the manuscript, on which all authors commented.

Corresponding author

Correspondence to Thomas A Steitz.

Ethics declarations

Competing interests

T.A.S. owns stock in and is on the advisory board of Rib-X Pharmaceuticals, Inc., which does structure-based drug design targeted at the ribosome.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, R., Blaha, G., Grodzicki, R. et al. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 17, 289–293 (2010). https://doi.org/10.1038/nsmb.1755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing