Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8

Abstract

The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A C-terminal fragment of Prp8 was able to directly interact with Brr2.
Figure 2: Retinitis pigmentosa mutants of Prp8 have variable effects on growth and ability of Prp8 to bind Brr2.
Figure 3: Unwinding of U4/U6 by Brr2 is stimulated by addition of Prp8-CTF.
Figure 4: ATPase activity of RNA-dependent Brr2 is inhibited by Prp8-CTF.
Figure 5: ATPase activity of RNA-dependent Brr2 is affected differently by RP mutations.

Similar content being viewed by others

References

  1. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  2. Bleichert, F. & Baserga, S.J. The long unwinding road of RNA helicases. Mol. Cell 27, 339–352 (2007).

    Article  CAS  Google Scholar 

  3. Cordin, O., Banroques, J., Tanner, N.K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    Article  CAS  Google Scholar 

  4. Rogers, G.W. Jr, Komar, A.A. & Merrick, W.C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002).

    Article  CAS  Google Scholar 

  5. Shen, J., Zhang, L. & Zhao, R. Biochemical characterization of the ATPase and helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. J. Biol. Chem. 282, 22544–22550 (2007).

    Article  CAS  Google Scholar 

  6. Laggerbauer, B., Achsel, T. & Luhrmann, R. The human U5–200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl. Acad. Sci. USA 95, 4188–4192 (1998).

    Article  CAS  Google Scholar 

  7. Wang, Y. & Guthrie, C. PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain. RNA 4, 1216–1229 (1998).

    Article  CAS  Google Scholar 

  8. Schwer, B. & Gross, C.H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 17, 2086–2094 (1998).

    Article  CAS  Google Scholar 

  9. Wagner, J.D., Jankowsky, E., Company, M., Pyle, A.M. & Abelson, J.N. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes. EMBO J. 17, 2926–2937 (1998).

    Article  CAS  Google Scholar 

  10. Tanaka, N., Aronova, A. & Schwer, B. Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes Dev. 21, 2312–2325 (2007).

    Article  CAS  Google Scholar 

  11. Tanaka, N. & Schwer, B. Mutations in PRP43 that uncouple RNA-dependent NTPase activity and pre-mRNA splicing function. Biochemistry 45, 6510–6521 (2006).

    Article  CAS  Google Scholar 

  12. Staley, J.P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999).

    Article  CAS  Google Scholar 

  13. Mayas, R.M., Maita, H. & Staley, J.P. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat. Struct. Mol. Biol. 13, 482–490 (2006).

    Article  CAS  Google Scholar 

  14. Xu, Y.Z. & Query, C.C. Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol. Cell 28, 838–849 (2007).

    Article  CAS  Google Scholar 

  15. Burgess, S.M. & Guthrie, C. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 73, 1377–1391 (1993).

    Article  CAS  Google Scholar 

  16. Couto, J.R., Tamm, J., Parker, R. & Guthrie, C. A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation. Genes Dev. 1, 445–455 (1987).

    Article  CAS  Google Scholar 

  17. Lauber, J. et al. The HeLa 200 kDa U5 snRNP-specific protein and its homologue in Saccharomyces cerevisiae are members of the DEXH-box protein family of putative RNA helicases. EMBO J. 15, 4001–4015 (1996).

    Article  CAS  Google Scholar 

  18. Xu, D., Nouraini, S., Field, D., Tang, S.J. & Friesen, J.D. An RNA-dependent ATPase associated with U2/U6 snRNAs in pre-mRNA splicing. Nature 381, 709–713 (1996).

    Article  CAS  Google Scholar 

  19. Kim, D.H. & Rossi, J.J. The first ATPase domain of the yeast 246-kDa protein is required for in vivo unwinding of the U4/U6 duplex. RNA 5, 959–971 (1999).

    Article  CAS  Google Scholar 

  20. Noble, S.M. & Guthrie, C. Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics 143, 67–80 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raghunathan, P.L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998).

    Article  CAS  Google Scholar 

  22. Madhani, H.D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992).

    Article  CAS  Google Scholar 

  23. Small, E.C., Leggett, S.R., Winans, A.A. & Staley, J.P. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol. Cell 23, 389–399 (2006).

    Article  CAS  Google Scholar 

  24. Bartels, C., Klatt, C., Luhrmann, R. & Fabrizio, P. The ribosomal translocase homologue Snu114p is involved in unwinding U4/U6 RNA during activation of the spliceosome. EMBO Rep. 3, 875–880 (2002).

    Article  CAS  Google Scholar 

  25. Brow, D.A. Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360 (2002).

    Article  CAS  Google Scholar 

  26. Grainger, R.J. & Beggs, J.D. Prp8 protein: at the heart of the spliceosome. RNA 11, 533–557 (2005).

    Article  CAS  Google Scholar 

  27. Boon, K.L., Norman, C.M., Grainger, R.J., Newman, A.J. & Beggs, J.D. Prp8p dissection reveals domain structure and protein interaction sites. RNA 12, 198–205 (2006).

    Article  CAS  Google Scholar 

  28. Pena, V., Liu, S., Bujnicki, J.M., Luhrmann, R. & Wahl, M.C. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell 25, 615–624 (2007).

    Article  CAS  Google Scholar 

  29. Zhang, L. et al. Crystal structure of the C-terminal domain of splicing factor Prp8 carrying retinitis pigmentosa mutants. Protein Sci. 16, 1024–1031 (2007).

    Article  CAS  Google Scholar 

  30. Bellare, P., Kutach, A.K., Rines, A.K., Guthrie, C. & Sontheimer, E.J. Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. RNA 12, 292–302 (2006).

    Article  CAS  Google Scholar 

  31. Mordes, D. et al. Pre-mRNA splicing and retinitis pigmentosa. Mol. Vis. 12, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Boon, K.L. et al. prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat. Struct. Mol. Biol. 14, 1077–1083 (2007).

    Article  CAS  Google Scholar 

  33. van Nues, R.W. & Beggs, J.D. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157, 1451–1467 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pena, V., Rozov, A., Fabrizio, P., Luhrmann, R. & Wahl, M.C. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J. 27, 2929–2940 (2008).

    Article  CAS  Google Scholar 

  35. Ritchie, D.B. et al. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat. Struct. Mol. Biol. 15, 1199–1205 (2008).

    Article  CAS  Google Scholar 

  36. Yang, K., Zhang, L., Xu, T., Heroux, A. & Zhao, R. Crystal structure of the β-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc. Natl. Acad. Sci. USA 105, 13817–13822 (2008).

    Article  CAS  Google Scholar 

  37. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  38. Martinez-Gimeno, M. et al. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 44, 2171–2177 (2003).

    Article  Google Scholar 

  39. Kuhn, A.N. & Brow, D.A. Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 155, 1667–1682 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuhn, A.N., Reichl, E.M. & Brow, D.A. Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proc. Natl. Acad. Sci. USA 99, 9145–9149 (2002).

    Article  CAS  Google Scholar 

  41. Fabrizio, P., McPheeters, D.S. & Abelson, J. In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev. 3, 2137–2150 (1989).

    Article  CAS  Google Scholar 

  42. Li, Z. & Brow, D.A. A rapid assay for quantitative detection of specific RNAs. Nucleic Acids Res. 21, 4645–4646 (1993).

    Article  CAS  Google Scholar 

  43. Brow, D.A. & Guthrie, C. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 334, 213–218 (1988).

    Article  CAS  Google Scholar 

  44. Biswas, E.E., Chen, P.H. & Biswas, S.B. Modulation of enzymatic activities of Escherichia coli DnaB helicase by single-stranded DNA-binding proteins. Nucleic Acids Res. 30, 2809–2816 (2002).

    Article  CAS  Google Scholar 

  45. Jennings, T.A. et al. RNA unwinding activity of the hepatitis C virus NS3 helicase is modulated by the NS5B polymerase. Biochemistry 47, 1126–1135 (2008).

    Article  CAS  Google Scholar 

  46. Pause, A., Methot, N. & Sonenberg, N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13, 6789–6798 (1993).

    Article  CAS  Google Scholar 

  47. Schwer, B. & Meszaros, T. RNA helicase dynamics in pre-mRNA splicing. EMBO J. 19, 6582–6591 (2000).

    Article  CAS  Google Scholar 

  48. Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem. 280, 1872–1881 (2005).

    Article  CAS  Google Scholar 

  49. Noble, C.G. & Song, H. MLN51 stimulates the RNA-helicase activity of eIF4AIII. PLoS ONE 2, e303 (2007).

    Article  Google Scholar 

  50. von Hippel, P.H. & Delagoutte, E. A general model for nucleic acid helicases and their “coupling” within macromolecular machines. Cell 104, 177–190 (2001).

    Article  CAS  Google Scholar 

  51. Faustino, N.A. & Cooper, T.A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  Google Scholar 

  52. Maita, H., Kitaura, H., Ariga, H. & Iguchi-Ariga, S.M. Association of PAP-1 and Prp3p, the products of causative genes of dominant retinitis pigmentosa, in the tri-snRNP complex. Exp. Cell Res. 302, 61–68 (2005).

    Article  CAS  Google Scholar 

  53. Maita, H. et al. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp. Cell Res. 300, 283–296 (2004).

    Article  CAS  Google Scholar 

  54. Nottrott, S., Urlaub, H. & Luhrmann, R. Hierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins. EMBO J. 21, 5527–5538 (2002).

    Article  CAS  Google Scholar 

  55. Chakarova, C.F. et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 11, 87–92 (2002).

    Article  CAS  Google Scholar 

  56. Park, J.W., Parisky, K., Celotto, A.M., Reenan, R.A. & Graveley, B.R. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc. Natl. Acad. Sci. USA 101, 15974–15979 (2004).

    Article  CAS  Google Scholar 

  57. Pleiss, J.A., Whitworth, G.B., Bergkessel, M. & Guthrie, C. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol. 5, e90 (2007).

    Article  Google Scholar 

  58. Bellare, P. et al. A role for ubiquitin in the spliceosome assembly pathway. Nat. Struct. Mol. Biol. 15, 444–451 (2008).

    Article  CAS  Google Scholar 

  59. Brenner, T.J. & Guthrie, C. Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation. Genetics 170, 1063–1080 (2005).

    Article  CAS  Google Scholar 

  60. Ghetti, A., Company, M. & Abelson, J. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA 1, 132–145 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Stevens (University of Texas, Austin) for the Brr2-TAP overexpression plasmid; L. Rice for assistance with MS; J. Credle for assistance with protein purification; R. Luhrmann (Max-Planck-Institute for Biophysical Chemistry) for the gift of anti-GST antibody; and J. Weissman (University of California, San Francisco) for the gift of anti-CBP antibody. We also thank J. Abelson and J. Pleiss for helpful discussions and members of the Guthrie laboratory for critical reading of the manuscript. C.G. is an American Cancer Society Research Professor of Molecular Genetics. This work was supported by a grant from the US National Institutes of Health to C.G. (GM21119), a National Institutes of General Medical Sciences postdoctoral fellowship to C.M. (F32GM077844), an American Cancer Society postdoctoral fellowship (PF-01-236-01-GMC) and Boyer Funds to A.K.K.

Author information

Authors and Affiliations

Authors

Contributions

C.M. and A.K.K. performed and analyzed the experiments; C.M., A.K.K. and C.G. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Christine Guthrie.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeder, C., Kutach, A. & Guthrie, C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 16, 42–48 (2009). https://doi.org/10.1038/nsmb.1535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1535

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing