Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NURR1 in Parkinson disease—from pathogenesis to therapeutic potential

Abstract

In Parkinson disease (PD), affected midbrain dopamine (DA) neurons lose specific dopaminergic properties before the neurons die. How the phenotype of DA neurons is normally established and the ways in which pathology affects the maintenance of cell identity are, therefore, important considerations. Orphan nuclear receptor NURR1 (NURR1, also known as NR4A2) is involved in the differentiation of midbrain DA neurons, but also has an important role in the adult brain. Emerging evidence indicates that impaired NURR1 function might contribute to the pathogenesis of PD: NURR1 and its transcriptional targets are downregulated in midbrain DA neurons that express high levels of the disease-causing protein α-synuclein. Clinical and experimental data indicate that disrupted NURR1 function contributes to induction of DA neuron dysfunction, which is seen in early stages of PD. The likely involvement of NURR1 in the development and progression of PD makes this protein a potentially interesting target for therapeutic intervention.

Key Points

  • NURR1 and other transcription factors that are essential for the development and specification of midbrain dopamine neurons during development continue to have an important role in the adult brain

  • Deletion of NURR1 in mature dopamine neurons results in progressive pathology, reduction in dopamine neuron markers and motor impairments—recapitulating early features of Parkinson disease

  • Ablation of Nurr1 in adult rodents results in reduced expression of genes associated with mitochondrial function and oxidative phosphorylation, suggesting a role for Nurr1 in the maintenance of midbrain dopamine neurons

  • NURR1 and its transcriptional targets are downregulated in midbrain dopamine neurons that express high levels of the disease-causing protein α-synuclein, as observed in rodent models and patients with Parkinson disease

  • α-Synuclein overexpression results in an almost complete blockade of GDNF trophic signalling and failure of GDNF to protect against α-synuclein-induced toxicity in affected neurons

  • Reduced NURR1 expression might result in induction of dopamine neuron dysfunction as well progression of degenerative changes, which could make this protein a promising therapeutic target

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of NURR1 functional domains, mode of DNA binding and mutations identified in the human NURR1 gene (NR4A2).
Figure 2: The DA neuron functions of NURR1.

Similar content being viewed by others

References

  1. Lees, A. J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    CAS  PubMed  Google Scholar 

  2. Cheng, H. C., Ulane, C. M. & Burke, R. E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Baker, K. D. et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 113, 731–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Perlmann, T. & Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 9, 769–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Smidt, M. P. & Burbach, J. P. How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci. 8, 21–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zetterstrom, R. H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Le, W., Conneely, O. M., He, Y., Jankovic, J. & Appel, S. H. Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J. Neurochem. 73, 2218–2221 (1999).

    CAS  PubMed  Google Scholar 

  9. Pan, T. et al. Nurr1 deficiency predisposes to lactacystin-induced dopaminergic neuron injury in vitro and in vivo. Brain Res. 1222, 222–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Luo, Y., Wang, Y., Kuang, S. Y., Chiang, Y. H. & Hoffer, B. Decreased level of Nurr1 in heterozygous young adult mice leads to exacerbated acute and long-term toxicity after repeated methamphetamine exposure. PLoS ONE 5, e15193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, C. et al. Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp. Neurol. 191, 154–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kadkhodaei, B. et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kadkhodaei, B. et al. Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc. Natl Acad. Sci. USA 110, 2360–2365 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng, K., Heydari, B. & Simon, D. K. A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease. Arch. Neurol. 60, 722–725 (2003).

    Article  PubMed  Google Scholar 

  15. Chen, C. M. et al. Nuclear receptor NR4A2 IVS6 +18insG and brain derived neurotrophic factor (BDNF) V66M polymorphisms and risk of Taiwanese Parkinson's disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 458–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H. et al. Genetic analysis of NR4A2 gene in a large population of Han Chinese patients with Parkinson's disease. Eur. J. Neurol. 20, 584–587 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, Y. et al. Association of the polymorphisms in NURR1 gene with Parkinson's disease [Chinese]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 25, 693–696 (2008).

    CAS  PubMed  Google Scholar 

  18. Tan, E. K. et al. Genetic analysis of Nurr1 haplotypes in Parkinson's disease. Neurosci. Lett. 347, 139–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Le, W. D. et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat. Genet. 33, 85–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Sleiman, P. M. et al. Characterisation of a novel NR4A2 mutation in Parkinson's disease brain. Neurosci. Lett. 457, 75–79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hering, R. et al. Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease. Neurology 62, 1231–1232 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Jacobsen, K. X. et al. A Nurr1 point mutant, implicated in Parkinson's disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol. Dis. 29, 117–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Grimes, D. A. et al. Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Mov. Disord. 21, 906–909 (2006).

    Article  PubMed  Google Scholar 

  24. Moran, L. B. et al. Analysis of alpha-synuclein, dopamine and parkin pathways in neuropathologically confirmed parkinsonian nigra. Acta Neuropathol. 113, 253–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Chu, Y. et al. Nurr1 in Parkinson's disease and related disorders. J. Comp. Neurol. 494, 495–514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu, Y., Kompoliti, K., Cochran, E. J., Mufson, E. J. & Kordower, J. H. Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J. Comp. Neurol. 450, 203–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Chu, Y. P. & Kordower, J. H. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease? Neurobiol. Dis. 25, 134–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  29. Le, W. et al. Decreased NURR1 gene expression in patients with Parkinson's disease. J. Neurol. Sci. 273, 29–33 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, H. et al. Decreased NURR1 and PITX3 gene expression in Chinese patients with Parkinson's disease. Eur. J. Neurol. 19, 870–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Pan, T. H., Xie, W. J., Jankovic, J. & Le, W. D. Decreased Nurr1 mRNA in peripheral blood lymphocytes in Parkinson's disease. Neurology 62, A108–A108 (2004).

    Article  Google Scholar 

  32. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA 95, 4013–4018 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eells, J. B., Misler, J. A. & Nikodem, V. M. Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res. Bull. 70, 186–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs, F. M. et al. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136, 2363–2373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hermanson, E. et al. Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp. Cell Res. 288, 324–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Smits, S. M., Ponnio, T., Conneely, O. M., Burbach, J. P. & Smidt, M. P. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur. J. Neurosci. 18, 1731–1738 (2003).

    Article  PubMed  Google Scholar 

  37. Gil, M. et al. Regulation of GTP cyclohydrolase I expression by orphan receptor Nurr1 in cell culture and in vivo. J. Neurochem. 101, 142–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Luo, Y. et al. VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp. Neurol. 203, 221–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Heng, X. et al. Nurr1 regulates Top IIβ and functions in axon genesis of mesencephalic dopaminergic neurons. Mol. Neurodegener. 7, 4 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joseph, B. et al. p57Kip2 cooperates with Nurr1 in developing dopamine cells. Proc. Natl Acad. Sci. USA 100, 15619–15624 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galleguillos, D. et al. Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. J. Neurochem. 114, 1158–1167 (2010).

    CAS  PubMed  Google Scholar 

  42. Wallen, A. A. et al. Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol. Cell. Neurosci. 18, 649–663 (2001).

    Article  CAS  Google Scholar 

  43. Exner, N., Lutz, A. K., Haass, C. & Winklhofer, K. F. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng, B. et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med. 2, 52ra73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Puigserver, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81, 163–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Volakakis, N. et al. NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc. Natl Acad. Sci. USA 107, 12317–12322 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, S. J. et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, S. J. et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet. 5, e1000604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiang, G. et al. Identification of activity-dependent gene expression profiles reveals specific subsets of genes induced by different routes of Ca2+ entry in cultured rat cortical neurons. J. Cell. Physiol. 212, 126–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Pegoraro, S. et al. Sequential steps underlying neuronal plasticity induced by a transient exposure to gabazine. J. Cell. Physiol. 222, 713–728 (2010).

    CAS  PubMed  Google Scholar 

  53. Barneda-Zahonero, B. et al. Nurr1 protein is required for N-methyl-D-aspartic acid (NMDA) receptor-mediated neuronal survival. J. Biol. Chem. 287, 11351–11362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, M. A. et al. Overexpression of midbrain-specific transcription factor Nurr1 modifies susceptibility of mouse neural stem cells to neurotoxins. Neurosci. Lett. 333, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sousa, K. M. et al. Microarray analyses support a role for Nurr1 in resistance to oxidative stress and neuronal differentiation in neural stem cells. Stem Cells 25, 511–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Jo, A. Y. et al. Generation of dopamine neurons with improved cell survival and phenotype maintenance using a degradation-resistant nurr1 mutant. Stem Cells 27, 2238–2246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144, 689–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pacelli, C. et al. Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease. Biochim. Biophys. Acta 1812, 1041–1053 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Deleidi, M. & Gasser, T. The role of inflammation in sporadic and familial Parkinson's disease. Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-013-1352-y.

  60. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kramer, E. R. et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 5, e39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pascual, A. et al. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat. Neurosci. 11, 755–761 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Eggert, K. et al. Glial cell line-derived neurotrophic factor protects dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neurosci. Lett. 269, 178–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Hou, J. G., Lin, L. F. & Mytilineou, C. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J. Neurochem. 66, 74–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Choi-Lundberg, D. L. et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275, 838–841 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Gash, D. M. et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Grondin, R. et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125, 2191–2201 (2002).

    Article  PubMed  Google Scholar 

  69. Kirik, D., Rosenblad, C., Bjorklund, A. & Mandel, R. J. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J. Neurosci. 20, 4686–4700 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sauer, H., Rosenblad, C. & Bjorklund, A. Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc. Natl Acad. Sci. USA 92, 8935–8939 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tomac, A. et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Lang, A. E. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59, 459–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Gill, S. S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Nutt, J. G. et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60, 69–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Bartus, R. T. et al. Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains. Mov. Disord. 26, 27–36 (2011).

    Article  PubMed  Google Scholar 

  76. Marks, W. J. Jr et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Decressac, M. et al. GDNF fails to exert neuroprotection in a rat α-synuclein model of Parkinson's disease. Brain 134, 2302–2311 (2011).

    Article  PubMed  Google Scholar 

  78. Lo Bianco, C., Deglon, N., Pralong, W. & Aebischer, P. Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson's disease. Neurobiol. Dis. 17, 283–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Decressac, M. et al. α-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci. Transl. Med. 163, 163ra156 (2012).

    Article  CAS  Google Scholar 

  80. Lin, X. et al. Conditional expression of Parkinson's disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J. Neurosci. 32, 9248–9264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W. & Kordower, J. H. Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Crews, L. et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS ONE 5, e9313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535–12544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chu, Y., Mickiewicz, A. L. & Kordower, J. H. α-Synuclein aggregation reduces nigral myocyte enhancer factor-2D in idiopathic and experimental Parkinson's disease. Neurobiol. Dis. 41, 71–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl Acad. Sci. USA 110, E1817–E1826 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Desplats, P. et al. α-Synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J. Biol. Chem. 286, 9031–9037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Azeredo da Silveira, S. et al. Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson's disease. Hum. Mol. Genet. 18, 872–887 (2009).

    CAS  PubMed  Google Scholar 

  88. Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. McLean, P. J., Ribich, S. & Hyman, B. T. Subcellular localization of α-synuclein in primary neuronal cultures: effect of missense mutations. J. Neural Transm. Suppl. 2000, 53–63 (2000).

    Google Scholar 

  90. Specht, C. G. et al. Subcellular localisation of recombinant α- and γ-synuclein. Mol. Cell. Neurosci. 28, 326–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Takahashi, M. et al. Phosphorylation of α-synuclein characteristic of synucleinopathy lesions is recapitulated in α-synuclein transgenic Drosophila. Neurosci. Lett. 336, 155–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Cooper-Knock, J. et al. Gene expression profiling in human neurodegenerative disease. Nat. Rev. Neurol. 8, 518–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Kontopoulos, E., Parvin, J. D. & Feany, M. B. α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15, 3012–3023 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Jin, H. et al. α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J. Neurosci. 31, 2035–2051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Siddiqui, A. et al. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease. Free Radic. Biol. Med. 53, 993–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Outeiro, T. F. et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Chintharlapalli, S. et al. Activation of Nur77 by selected 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathways. J. Biol. Chem. 280, 24903–24914 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Dubois, C., Hengerer, B. & Mattes, H. Identification of a potent agonist of the orphan nuclear receptor Nurr1. ChemMedChem 1, 955–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hintermann, S. et al. Identification of a series of highly potent activators of the Nurr1 signaling pathway. Bioorg. Med. Chem. Lett. 17, 193–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Inamoto, T. et al. 1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth. Mol. Cancer Ther. 7, 3825–3833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, X., Lee, S. O. & Safe, S. Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3′-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem. Pharmacol. 83, 1445–1455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ordentlich, P., Yan, Y., Zhou, S. & Heyman, R. A. Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J. Biol. Chem. 278, 24791–24799 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Poppe, L. et al. Discovery of ligands for Nurr1 by combined use of NMR screening with different isotopic and spin-labeling strategies. J. Biomol. Screen 12, 301–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Wansa, K. D., Harris, J. M., Yan, G., Ordentlich, P. & Muscat, G. E. The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J. Biol. Chem. 278, 24776–24790 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, Z. et al. Anti-parkinsonian effects of Nurr1 activator in ubiquitin-proteasome system impairment induced animal model of Parkinson's disease. CNS Neurol. Disord. Drug Targets 11, 768–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Wallen-Mackenzie, A. et al. Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev. 17, 3036–3047 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Morita, K. et al. Selective allosteric ligand activation of the retinoid X receptor heterodimers of NGFI-B and Nurr1. Biochem. Pharmacol. 71, 98–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Bartus, R. T. et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80, 1698–1701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members in our laboratories for valuable discussions. This work was supported by grants from the Swedish Research Council via a Linnaeus grant (A. Björklund & T. Perlmann), the Swedish Strategic Research Foundation (A. Björklund & T. Perlmann) and the Michael J. Fox Foundation (A. Björklund & T. Perlmann). We apologize to the authors of the many interesting studies that could not be included in this Review owing to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial discussion of content, contributed to writing the article, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Thomas Perlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decressac, M., Volakakis, N., Björklund, A. et al. NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nat Rev Neurol 9, 629–636 (2013). https://doi.org/10.1038/nrneurol.2013.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing