Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging outcomes in cardiovascular clinical trials

A Correction to this article was published on 01 November 2009

This article has been updated

Abstract

Imaging has had an important role in cardiovascular disease over the past decade, with the increasing reliance on imaging outcomes as surrogates for clinical end points. Clinical trials now show a trend towards the use of functional, rather than anatomical, imaging modalities. Use of these powerful tools needs to be optimized in the design of cardiovascular trials. In the future, imaging modalities will be fundamental to research and drug development and an increased emphasis will be placed on the relationship between the results of imaging studies and clinical outcomes.

Key Points

  • A wide spectrum of imaging techniques can be used in the management of patients with cardiovascular disease; these modalities may be invasive or noninvasive, and have anatomical or functional targets

  • The role of imaging in cardiovascular clinical trials has grown tremendously

  • Imaging studies have shed light on mechanistic processes and their use is prominent in the early phases of drug development and safety assessment

  • Imaging findings are viable surrogate markers for cardiovascular end points and, in future clinical trials, increased use of imaging modalities could decrease financial costs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complex carotid plaque shown by bilateral FDG-PET uptake, with more uptake in right common carotid than in the left carotid.
Figure 2: Right common carotid artery lesion shown by FDG-PET with CT co-localization.

Similar content being viewed by others

Change history

References

  1. US Department of Health & Human Services. National Institutes of Health Research Portfolio Online Reporting Tool (RePORT): reports, data and analyses of NIH research activities. Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC) [online], (2009).

  2. Davies, M. J. Acute coronary thrombosis—the role of plaque disruption and its initiation and prevention. Eur. Heart J. 16 (Suppl. L), 3–7 (1995).

    Article  Google Scholar 

  3. Davies, M. J. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94, 2013–2020 (1996).

    Article  CAS  Google Scholar 

  4. Waters, D., Craven, T. E. & Lesperance, J. Prognostic significance of progression of coronary atherosclerosis. Circulation 87, 1067–1075 (1993).

    Article  CAS  Google Scholar 

  5. Berry, C. et al. Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation 115, 1851–1857 (2007).

    Article  Google Scholar 

  6. O'Leary, D. H. et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 340, 14–22 (1999).

    Article  CAS  Google Scholar 

  7. Bots, M. L. et al. Common carotid intima–media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96, 1432–1437 (1997).

    Article  CAS  Google Scholar 

  8. Hodis, H. N. et al. The role of carotid arterial intima–media thickness in predicting clinical coronary events. Ann. Intern. Med. 128, 262–269 (1998).

    Article  CAS  Google Scholar 

  9. Tang, T. Y. et al. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis 196, 879–887 (2008).

    Article  CAS  Google Scholar 

  10. Trivedi, R. A. et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35, 1631–1635 (2004).

    Article  Google Scholar 

  11. Amirbekian, V. et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc. Natl Acad. Sci. USA 104, 961–966 (2007).

    Article  CAS  Google Scholar 

  12. Hoffmann, U. et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J. Am. Coll. Cardiol. 47, 1655–1662 (2006).

    Article  Google Scholar 

  13. Hyafil, F. et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 13, 636–641 (2007).

    Article  CAS  Google Scholar 

  14. Wayhs, R. et al. High coronary artery calcium scores pose an extremely elevated risk for hard events. J. Am. Coll. Cardiol. 39, 225–230 (2002).

    Article  Google Scholar 

  15. Pohle, K. et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190, 174–180 (2007).

    Article  CAS  Google Scholar 

  16. Carrascosa, P. M. et al. Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am. J. Cardiol. 97, 598–602 (2006).

    Article  Google Scholar 

  17. Chen, B. X. et al. Neointimal coverage of bare-metal and sirolimus-eluting stents evaluated with optical coherence tomography. Heart 94, 566–570 (2008).

    Article  CAS  Google Scholar 

  18. Wang, J. et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J. Am. Coll. Cardiol. 39, 1305–1313 (2002).

    Article  Google Scholar 

  19. Moreno, P. et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105, 923–927 (2002).

    Article  Google Scholar 

  20. Weber, W. A. & Figlin, R. Monitoring cancer treatment with PET/CT: does it make a difference? J. Nucl. Med. 48 (Suppl. 1), 36S–44S (2007).

    CAS  PubMed  Google Scholar 

  21. Ishino, S. et al. 99Tc-annexin A5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits. Eur. J. Nucl. Med. Mol. Imaging 34, 889–899 (2007).

    Article  Google Scholar 

  22. Johnson, L. L. et al. 99Tc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J. Nucl. Med. 46, 1186–1193 (2005).

    PubMed  Google Scholar 

  23. Isobe, S. et al. Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. J. Nucl. Med. 47, 1497–1505 (2006).

    CAS  PubMed  Google Scholar 

  24. Kietselaer, B. L. et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N. Engl. J. Med. 350, 1472–1473 (2004).

    Article  CAS  Google Scholar 

  25. Virmani, R., Ladich, E. R., Burke, A. P. & Kolodgie, F. D. Histopathology of carotid atherosclerotic disease. Neurosurgery 59 (Suppl. 3), S219–S227 (2006).

    PubMed  Google Scholar 

  26. Yusuf, S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med. 342, 145–153 (2000).

    Article  CAS  Google Scholar 

  27. Lonn, E. et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 103, 919–925 (2001).

    Article  CAS  Google Scholar 

  28. Crouse, J. R. 3rd, Craven, T. E., Hagaman, A. P. & Bond, M. G. Association of coronary disease with segment-specific intimal–medial thickening of the extracranial carotid artery. Circulation 92, 1141–1147 (1995).

    Article  Google Scholar 

  29. Espeland, M. A. et al. Reliability of longitudinal ultrasonographic measurements of carotid intimal–medial thicknesses. Asymptomatic Carotid Artery Progression Study Research Group. Stroke 27, 480–485 (1996).

    Article  CAS  Google Scholar 

  30. Yusuf, S. et al. Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 154–160 (2000).

    Article  CAS  Google Scholar 

  31. Chen, Z. et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler. Thromb. Vasc. Biol. 21, 372–377 (2001).

    Article  CAS  Google Scholar 

  32. Brown, J. D. & Plutzky, J. Peroxisome proliferator activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115, 518–533 (2007).

    Article  CAS  Google Scholar 

  33. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (Prospective Pioglitazone Clinical Trial in Macrovascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    Article  CAS  Google Scholar 

  34. Nissen, S. E. et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299, 1561–1573 (2008).

    Article  CAS  Google Scholar 

  35. Langenfeld, M. R. et al. Pioglitazone decreases carotid intima–media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 111, 2525–2531 (2005).

    Article  CAS  Google Scholar 

  36. Ratner, R. E. et al. Assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history (APPROACH): study design and baseline characteristics. Am. Heart J. 156, 1074–1079 (2008).

    Article  CAS  Google Scholar 

  37. Cannon, C. P. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495–1504 (2004).

    Article  CAS  Google Scholar 

  38. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    Article  CAS  Google Scholar 

  39. Taylor, A. J. et al. ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 106, 2055–2060 (2002).

    Article  CAS  Google Scholar 

  40. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  Google Scholar 

  41. Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).

    Article  CAS  Google Scholar 

  42. Crouse, J. R. 3rd et al. Effect of rosuvastatin on progression of carotid intima–media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA 297, 1344–1353 (2007).

    Article  CAS  Google Scholar 

  43. Kastelein, J. J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Article  CAS  Google Scholar 

  44. Tardif, J. C. et al. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 110, 3372–3377 (2004).

    Article  CAS  Google Scholar 

  45. Nissen, S. E. et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N. Engl. J. Med. 354, 1253–1263 (2006).

    Article  CAS  Google Scholar 

  46. Meuwese, M. C. et al. ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA 301, 1131–1139 (2009).

    Article  CAS  Google Scholar 

  47. Kastelein, J. J. et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356, 1620–1630 (2007).

    Article  CAS  Google Scholar 

  48. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  Google Scholar 

  49. Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    Article  CAS  Google Scholar 

  50. A study of the effect of RO4607381 on atherosclerotic plaque in patients with coronary heart disease ClinicalTrials.gov: a service of the US National Institutes of Health [online], (2009).

  51. Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007).

    Article  Google Scholar 

  52. Nissen, S. E. et al. Effect of recombinant ApoA-IMilano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  Google Scholar 

  53. Niacin plus statin to prevent vascular events. ClinicalTrials.gov: a service of the US National Institutes of Health [online]. (2009).

  54. Farkouh, M. E. et al. Design of the Future Revascularization Evaluation in Patients With Diabetes Mellitus: Optimal Management of Multivessel Disease (FREEDOM) Trial. Am. Heart J. 155, 215–223 (2008).

    Article  Google Scholar 

  55. Thoenes, M. et al. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int. J. Clin. Pract. 61, 1942–1948 (2007).

    Article  CAS  Google Scholar 

  56. Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    Article  CAS  Google Scholar 

  57. Taylor, A. J. et al. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2. Circulation 110, 3512–3517 (2004).

    Article  CAS  Google Scholar 

  58. Taylor, A. J. et al. The effect of 24 months of combination statin and extended-release niacin on carotid intima–media thickness: ARBITER 3. Curr. Med. Res. Opin. 22, 2243–2250 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Farkouh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzouk, L., Farkouh, M. Imaging outcomes in cardiovascular clinical trials. Nat Rev Cardiol 6, 524–531 (2009). https://doi.org/10.1038/nrcardio.2009.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing