Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

In the wrong place at the wrong time: does cyclin mislocalization drive oncogenic transformation?

Abstract

Cyclin-dependent kinases (CDKs) are regulated by both cyclin abundance and cyclin localization. Increased cyclin expression in cancer was first observed two decades ago, and its role in pathogenesis has been investigated in great depth. This Opinion article focuses on the spatial deregulation of cyclin expression and its potential link to oncogenesis. It describes the contexts in which particular cyclins have been reported to be mislocalized in neoplasia, reviews the mechanisms underlying the dynamic subcellular localization of CDK–cyclin complexes in normal cells, and discusses how these controls can be disrupted in cancer. It also outlines the mechanisms by which cyclin mislocalization might disrupt cell cycle control and interfere with faithful chromosome segregation. Finally, it discusses the extent to which cyclin mislocalization might facilitate tumorigenesis in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of cell cycle processes by CDK–cyclin complexes.
Figure 2: RAN-regulated nucleocytoplasmic transport.
Figure 3: How LMW-cyclin E might interfere with mitosis.

Similar content being viewed by others

References

  1. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    CAS  PubMed  Google Scholar 

  2. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Rev. Cancer 9, 153–166 (2009).

    CAS  Google Scholar 

  3. Morgan, D. O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396 (1983).

    CAS  PubMed  Google Scholar 

  5. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, J. et al. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12, 2131–2143 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moore, J. D., Yang, J., Truant, R. & Kornbluth, S. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol. 144, 213–224 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore, J. D., Kornbluth, S. & Hunt, T. Identification of the nuclear localization signal in Xenopus cyclin E and analysis of its role in replication and mitosis. Mol. Biol. Cell. 13, 4388–4400 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackman, M., Kubota, Y., den Elzen, N., Hagting, A. & Pines, J. Cyclin A and cyclin E-Cdk complexes shuttle between the nucleus and the cytoplasm. Mol. Biol. Cell. 13, 1030–1045 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsumoto, Y. & Maller, J. L. A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 306, 885–888 (2004).

    CAS  PubMed  Google Scholar 

  11. Errico, A., Deshmukh, K., Tanaka, Y., Pozniakovsky, A. & Hunt, T. Identification of substrates for cyclin dependent kinases. Adv. Enzyme Regul. 50, 375–399 (2010).

    PubMed  Google Scholar 

  12. Pagliuca, F. W. et al. Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol. Cell 43, 406–417 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fisher, D. L. & Nurse, P. A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J. 15, 850–860 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Strausfeld, U. P. et al. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J. Cell Sci. 109, 1555–1563 (1996).

    CAS  PubMed  Google Scholar 

  15. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 (1996).

    CAS  PubMed  Google Scholar 

  16. Coudreuse, D. & Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 46, 1074–1079 (2010).

    Google Scholar 

  17. Hochegger, H., Takeda, S. & Hunt, T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nature Rev. Mol. Cell. Biol. 9, 910–916 (2008).

    CAS  Google Scholar 

  18. Vigneri, P. & Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nature Med. 7, 228–234 (2001).

    CAS  PubMed  Google Scholar 

  19. Moore, J. D., Kirk, J. A. & Hunt, T. Unmasking the S-phase-promoting potential of cyclin B1. Science 300, 987–990 (2003).

    CAS  PubMed  Google Scholar 

  20. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell. 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  21. Baldin, V., Lukas, J., Marcote, M. J., Pagano, M. & Draetta, G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7, 812–821 (1993).

    CAS  PubMed  Google Scholar 

  22. Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A. & Sutherland, R. L. Cyclin D as a therapeutic target in cancer. Nature Rev. Cancer 11, 558–572 (2011).

    CAS  Google Scholar 

  23. Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M. & Pagano, M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15, 612–624 (1995).

    Google Scholar 

  24. Pines, J. & Hunter, T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 115, 1–17 (1991).

    CAS  PubMed  Google Scholar 

  25. Pascreau, G., Eckerdt, F., Churchill, M. E. & Maller, J. L. Discovery of a distinct domain in cyclin A sufficient for centrosomal localization independently of Cdk binding. Proc. Natl Acad. Sci. USA 107, 2932–2937 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Won, K. A. & Reed, S. I. Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J. 15, 4182–4193 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bailly, E., Pines, J., Hunter, T. & Bornens, M. Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J. Cell Sci. 101, 529–545 (1992).

    CAS  PubMed  Google Scholar 

  28. Jackman, M., Lindon, C., Nigg, E. A. & Pines, J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nature Cell Biol. 5, 143–148 (2003).

    CAS  PubMed  Google Scholar 

  29. Gavet, O. & Pines, J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 189, 247–259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Comstock, C. E. S., Revelo, M. P., Buncher, C. R. & Knudsen, K. E. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br. J. Cancer 96, 970–979 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chung, R. et al. Biological and clinical significance of GSK-3beta in mantle cell lymphoma-an immunohistochemical study. Int. J. Clin. Exp. Pathol. 3, 244–253 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Benzeno, S. et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 25, 6291–6303 (2006).

    CAS  PubMed  Google Scholar 

  33. Barbash, O. et al. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 14, 68–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu, F., Gladden, A. B. & Diehl, J. A. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 63, 7056–7061 (2003).

    CAS  PubMed  Google Scholar 

  35. Keyomarsi, K. et al. Cyclin E, a potential prognostic marker for breast cancer. Cancer Res. 54, 380–385 (1994).

    CAS  PubMed  Google Scholar 

  36. Porter, D. C. et al. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol. Cell. Biol. 21, 6254–6269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Spruck, C. et al. Detection of low molecular weight derivatives of cyclin E1 is a function of cyclin E1 protein levels in breast cancer. Cancer Res. 66, 7355–7360 (2006).

    CAS  PubMed  Google Scholar 

  38. Wingate, H. et al. Low molecular weight cyclin E is specific in breast cancer and is associated with mechanisms of tumor progression. Cell Cycle 8, 1062–1068 (2009).

    CAS  PubMed  Google Scholar 

  39. Delk, N. A., Hunt, K. K. & Keyomarsi, K. Altered subcellular localization of tumor-specific cyclin E isoforms affects cyclin-dependent kinase 2 complex formation and proteasomal regulation. Cancer Res. 69, 2817–2825 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Davidson, B. et al. Low-molecular weight forms of cyclin E differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poor survival in ovarian carcinoma. Cancer 110, 1264–1271 (2007).

    CAS  PubMed  Google Scholar 

  41. Wang, J., Chenivesse, X., Henglein, B. & Bréchot, C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343, 555–557 (1990).

    CAS  PubMed  Google Scholar 

  42. Berasain, C. et al. Oncogenic activation of a human cyclin A2 targeted to the endoplasmic reticulum upon hepatitis B virus genome insertion. Oncogene 16, 1277–1288 (1998).

    CAS  PubMed  Google Scholar 

  43. Santos, S. D., Wollman, R., Meyer, T. & Ferrell, J. E. Jr. Spatial positive feedback at the onset of mitosis. Cell 149, 1500–1513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki, T. et al. Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci. 98, 644–651 (2007).

    CAS  PubMed  Google Scholar 

  45. Nozoe, T. et al. Significance of cyclin B1 expression as an independent prognostic indicator of patients with squamous cell carcinoma of the esophagus. Clin. Cancer Res. 8, 817–822 (2002).

    CAS  PubMed  Google Scholar 

  46. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell. Biol. 8, 195–208 (2007).

    CAS  Google Scholar 

  47. Yang, J. & Kornbluth, S. All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol. 9, 207–210 (1999).

    CAS  PubMed  Google Scholar 

  48. Alt, J. R., Cleveland, J. L., Hannink, M. & Diehl, J. A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14, 3102–3114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Benzeno, S. & Diehl, J. A . C-terminal sequences direct cyclin D1-CRM1 binding. J. Biol. Chem. 279, 56061–56066 (2004).

    CAS  PubMed  Google Scholar 

  50. Yang, J., Song, H., Walsh, S., Bardes, E. S. & Kornbluth, S. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. J. Biol. Chem. 276, 3604–3609 (2001).

    CAS  PubMed  Google Scholar 

  51. Ferguson, R. L. & Maller, J. L. Centrosomal localization of cyclin E-Cdk2 is required for initiation of DNA synthesis. Curr. Biol. 20, 856–860 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown, N. R. et al. The crystal structure of cyclin A. Structure 3, 1235–1247 (1995).

    CAS  PubMed  Google Scholar 

  53. Takizawa, C. G., Weis, K. & Morgan, D. O. Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc. Natl Acad. Sci. USA 96, 7938–7943 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hagting, A., Jackman, M., Simpson, K. & Pines, J. Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr. Biol. 9, 680–689 (1999).

    CAS  PubMed  Google Scholar 

  55. Alt, J. R. Gladden, A.B. & Diehl, J.A. p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J. Biol. Chem. 277, 8517–8523 (2002).

    CAS  PubMed  Google Scholar 

  56. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Moreno-Bueno, G. et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer Oncogene 22, 6115–6118 (2003).

    CAS  PubMed  Google Scholar 

  58. Solomon, D. A. et al. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J. Biol. Chem. 278, 30339–30347 (2003).

    CAS  PubMed  Google Scholar 

  59. Quelle, D. E. et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7, 1559–1571 (1993).

    CAS  PubMed  Google Scholar 

  60. Gladden, A. B., Woolery, R., Aggarwal, P., Wasik, M. A. & Diehl, J. A. Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene 25, 998–1007 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aggarwal, P. et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev. 21, 2908–2922 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    CAS  PubMed  Google Scholar 

  63. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J.P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    CAS  PubMed  Google Scholar 

  64. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997–1008 (2003).

    CAS  PubMed  Google Scholar 

  66. Aggarwal, P. et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 18, 329–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Siu, K. T., Rosner, M. R. & Minella, A. C. An integrated view of cyclin E function and regulation. Cell Cycle 11, 57–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    CAS  PubMed  Google Scholar 

  69. Ekholm-Reed, S. et al. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer. Cancer Res. 64, 795–800 (2004).

    PubMed  Google Scholar 

  70. Ekholm-Reed, S. et al. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol. 165, 789–800 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Keck, J. M. et al. Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1). J. Cell Biol. 178, 371–385 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    CAS  PubMed  Google Scholar 

  73. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    CAS  PubMed  Google Scholar 

  74. Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl Acad. Sci. USA 105, 3443–3448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Christopoulou, L., Moore, J. D. & Tyler-Smith, C. Over-expression of wild-type Securin leads to aneuploidy in human cells. Cancer Lett. 202, 213–218 (2003).

    CAS  PubMed  Google Scholar 

  76. Loeb, K. R. et al. A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell. 8, 35–47 (2005).

    CAS  PubMed  Google Scholar 

  77. Wingate, H. et al. The tumor-specific hyperactive forms of cyclin E are resistant to inhibition by p21 and p27. J. Biol. Chem. 280, 15148–15157 (2005).

    CAS  PubMed  Google Scholar 

  78. Keyomarsi, K. et al. Cyclin E and survival in patients with breast cancer. N. Engl. J. Med. 347, 1566–1575 (2002).

    CAS  PubMed  Google Scholar 

  79. Akli, S. et al. Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res. 64, 3198–3208 (2004).

    CAS  PubMed  Google Scholar 

  80. Akli, S. et al. Overexpression of the low molecular weight cyclin E in transgenic mice induces metastatic mammary carcinomas through the disruption of the ARF-p53 pathway. Cancer Res. 67, 7212–7222 (2007).

    CAS  PubMed  Google Scholar 

  81. Bagheri-Yarmand, R., Biernacka, A., Hunt, K. K. & Keyomarsi, K. Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification. Cancer Res. 70, 5074–5084 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bagheri-Yarmand, R., Nanos-Webb, A., Biernacka, A., Bui, T. & Keyomarsi, K. Cyclin E deregulation impairs mitotic progression through premature activation of Cdc25C. Cancer Res. 70, 5085–5095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104, 83–93 (2001).

    CAS  PubMed  Google Scholar 

  84. Silljé, H. H., Nagel, S., Körner, R. & Nigg, E. A. HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr. Biol. 16, 731–742 (2006).

    PubMed  Google Scholar 

  85. Faivre, J. et al. Centrosome overduplication, increased ploidy and transformation in cells expressing endoplasmic reticulum-associated cyclin A2. Oncogene 21, 1493–1500 (2002).

    CAS  PubMed  Google Scholar 

  86. Wang, H. C., Huang, W., Lai, M. D. & Su, I. J. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 97, 683–688 (2006).

    CAS  PubMed  Google Scholar 

  87. Faivre, J. et al. Membrane-anchored cyclin A2 triggers Cdc2 activation in Xenopus oocyte. FEBS Lett. 506, 243–248 (2001).

    CAS  PubMed  Google Scholar 

  88. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).

    CAS  PubMed  Google Scholar 

  89. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003).

    CAS  PubMed  Google Scholar 

  90. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003).

    CAS  PubMed  Google Scholar 

  91. Deibler, R. W. & Kirschner, M. W. Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts. Mol. Cell 37, 753–767 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jin, P., Hardy, S. & Morgan, D. O. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 141, 875–885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  94. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer 10, 102–115 (2010).

    CAS  Google Scholar 

  95. Nowak, M. A., Michor, F., Komarova, N. L. & Iwasa, Y. Evolutionary dynamics of tumor suppressor gene inactivation. Proc. Natl Acad. Sci. USA 101, 10635–10638 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Manning, A. L. & Dyson, N. J. RB: mitotic implications of a tumour suppressor. Nature Rev. Cancer 12, 220–226 (2012).

    CAS  Google Scholar 

  97. Kelly, B. L., Wolfe, K. G. & Roberts, J. M. Identification of a substrate-targeting domain in cyclin E necessary for phosphorylation of the retinoblastoma protein. Proc. Natl Acad. Sci. USA 95, 2535–2540 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Millar, E. K. et al. Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene 28, 1812–1820 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Alberts, B. et al. Molecular Biology of the Cell. 4th edition. (Garland Science, 2002).

    Google Scholar 

  100. Santamaría, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007).

    PubMed  Google Scholar 

  101. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    CAS  PubMed  Google Scholar 

  102. Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431–443 (2003).

    CAS  PubMed  Google Scholar 

  103. Kalaszczynska, I. et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138, 352–365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kaláb, P., Pralle, A., Isacoff, E. Y., Heald. R. & Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697–701 (2006).

    PubMed  Google Scholar 

  105. Petronczki, M., Lénárt, P. & Peters, J. M. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev. Cell 14, 646–659 (2008).

    CAS  PubMed  Google Scholar 

  106. Neef, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biol. 9, 436–444 (2007).

    CAS  PubMed  Google Scholar 

  107. Niiya, F., Xie, X., Lee, K. S., Inoue, H. & Miki, T. Inhibition of cyclin-dependent kinase 1 induces cytokinesis without chromosome segregation in an ECT2 and MgcRacGAP-dependent manner. J. Biol. Chem. 280, 36502–36509 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank J. Yang, H. Hochegger, R. Graeser, S. Geley and C. Ellenreider for helpful comments on an earlier version of this manuscript and also the anonymous referees for their suggestions for clarifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Moore.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Cancer Genome Project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J. In the wrong place at the wrong time: does cyclin mislocalization drive oncogenic transformation?. Nat Rev Cancer 13, 201–208 (2013). https://doi.org/10.1038/nrc3468

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3468

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer