Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes

Key Points

  • Myelodysplastic syndromes (MDS) are a group of diseases that present with the paradox of cytopenia despite a cellular bone marrow. This can be explained by excessive cytokine-mediated intramedullary apoptosis of haematopoietic cells.

  • Emerging biological insights are providing a molecular basis for the phenotypic and clinical heterogeneity of MDS.

  • Defects in ribosomal biogenesis have been associated with both congenital and acquired anaemias. These defects lead to a ribosomal stress response in the cell with an increase in p53 expression, thus providing one molecular explanation for the excessive apoptosis of MDS cells.

  • Abnormal regulation of haematopoiesis by microRNAs (miRNAs) has now been shown to contribute to the pathology of MDS.

  • The importance of epigenetic changes in MDS — initially suspected because of the responsiveness of patients with MDS to demethylating agents — has been molecularly demonstrated through the identification of mutations in genes controlling chromatin methylation and deacetylation.

  • Multiple oncogenes and tumour suppressor genes are mutated, although none has been specifically associated with MDS.

  • Mutations of specific spliceosome genes, either alone or combined with other genetic abnormalities, may be responsible for different MDS phenotypes.

  • An incremental understanding of molecular lesions accounting for clonal expansion in the presence of excessive apoptosis — which is the paradox in MDS — will be the roadmap to improved and targeted therapies.

Abstract

Myelodysplastic syndromes (MDS) are malignant clonal disorders of haematopoietic stem cells and their microenvironment, affecting older individuals (median age 70 years). Unique features that are associated with MDS — but which are not necessarily present in every patient with MDS — include excessive apoptosis in maturing clonal cells, a pro-inflammatory bone marrow microenvironment, specific chromosomal abnormalities, abnormal ribosomal protein biogenesis, the presence of uniparental disomy, and mutations affecting genes involved in proliferation, methylation and epigenetic modifications. Although emerging insights establish an association between molecular abnormalities and the phenotypic heterogeneity of MDS, their origin and progression remain enigmatic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incidence and prognosis of common chromosomal abnormalities in MDS.

Similar content being viewed by others

References

  1. Anastasi, J. et al. Cytogenetic clonality in myelodysplastic syndromes studied with fluorescence in situ hybridization: lineage, response to growth factor therapy, and clone expansion. Blood 81, 1580–1585 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Raza, A. et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 86, 268–276 (1995). The first study to report the presence of increased apoptosis in MDS bone marrows as a unique feature of the disease.

    Article  CAS  PubMed  Google Scholar 

  3. Raza, A. et al. Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int. J. Hematol. 63, 265–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Parker, J. E. et al. 'Low-risk' myelodysplastic syndrome is associated with excessive apoptosis and an increased ratio of pro- versus anti-apoptotic bcl-2-related proteins. Br. J. Haematol. 103, 1075–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Parker, J. E. et al. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 96, 3932–3938 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Bianco, P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 117, 5281–5288 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010). This paper reports that the disruption of Dicer1 or Sbds in osteoprogenitor cells results in myelodysplasia and leukaemia in a mouse model. It is the first study to show that stromal cell dysfunction can result in an MDS-like phenotype.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Raza, A. et al. Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous iodo- and/or bromodeoxyuridine. Exp. Hematol. 25, 530–535 (1997).

    CAS  PubMed  Google Scholar 

  9. Mundle, S. D. et al. Indication of an involvement of interleukin-1ß converting enzyme (ICE)-like protease in intramedullary apoptotic cell death in the bone marrows of patients with myelodysplastic syndromes (MDS). Blood 88, 2640–2647 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Raza, A., et al. A paradigm shift in myelodysplastic syndromes. Leukemia 10, 1648–1652 (1996).

    CAS  PubMed  Google Scholar 

  11. Calado, R. T. Immunologic aspects of hypoplastic myelodysplastic syndrome. Semin. Oncol. 38, 667–672 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Marisavljevic, D. et al. Hypocellular myelodysplastic syndromes: clinical and biological significance. Med. Oncol. 22, 169–175 (2005).

    Article  PubMed  Google Scholar 

  13. Wlodarski, M. W. et al. Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome. Blood 108, 2632–2641 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sloand, E. M. et al. CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109, 2399–2405 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Marsh, J. et al. Prospective randomized multicenter study comparing cyclosporin alone versus the combination of antithymocyte globulin and cyclosporin for treatment of patients with nonsevere aplastic anemia: a report from the European Blood and Marrow Transplant (EBMT) Severe Aplastic Anaemia Working Party. Blood 93, 2191–2195 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Sloand, E. M. et al. Alemtuzumab treatment of intermediate-1 myelodysplasia patients is associated with sustained improvement in blood counts and cytogenetic remissions. J. Clin. Oncol. 28, 5166–5173 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Horikawa, K. et al. Apoptosis resistance of blood cells from patients with paroxysmal nocturnal hemoglobinuria, aplastic anemia, and myelodysplastic syndrome. Blood 90, 2716–2722 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Muñoz-Pinedo, C. Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv. Exp. Med. Biol. 738, 124–143 (2012).

    Article  PubMed  Google Scholar 

  20. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Scott, F. L. et al. The Fas–FADD death domain complex structure unravels signalling by receptor clustering. Nature 457, 1019–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Dickens, L. S., Powley, I. R., Hughes, M. A. & Macfarlane, M. The 'complexities' of life and death: death receptor signalling platforms. Exp. Cell Res. 318, 1269–1277 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Mundle, S. D. et al. Evidence for involvement of tumor necrosis factor-α in apoptotic death of bone marrow cells in myelodysplastic syndromes. Am. J. Hematol. 60, 36–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Claessens, Y. E. et al. In vitro proliferation and differentiation of erythroid progenitors from patients with myelodysplastic syndromes: evidence for Fas-dependent apoptosis. Blood 99, 1594–1601 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Campioni, D. et al. Evidence for a role of TNF-related apoptosis-inducing ligand (TRAIL) in the anemia of myelodysplastic syndromes. Am. J. Pathol. 166, 557–563 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ali, A. et al. Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes. J. Hematother. Stem Cell Res. 8, 343–356 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Hellström-Lindberg, E. et al. Apoptosis in refractory anaemia with ringed sideroblasts is initiated at the stem cell level and associated with increased activation of caspases. Br. J. Haematol. 112, 714–726 (2001).

    Article  PubMed  Google Scholar 

  28. Mundle, S. D. et al. Correlation of tumor necrosis factor-α (TNFα) with high Caspase 3-like activity in myelodysplastic syndromes. Cancer Lett. 140, 201–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Shimazaki, K., Ohshima, K., Suzumiya, J., Kawasaki, C. & Kikuchi, M. Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br. J. Haematol. 110, 584–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fatica, A. & Tollervey, D. Making ribosomes. Curr. Opin. Cell Biol. 14, 313–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nature Rev. Cancer. 10, 301–309 (2010).

    Article  CAS  Google Scholar 

  32. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genet. 21, 169–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Ridanpää, M. et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195–203 (2001).

    Article  PubMed  Google Scholar 

  35. Boocock, G. R. et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nature Genet. 33, 97–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Ebert, B. L., et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008). This study shows that haploinsufficiency for a ribosomal protein gene ( RPS14 ) contributes to the phenotype of 5q syndrome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q syndrome phenotype. Nature Med. 16, 49–58 (2010). This study reports on the contribution of two miRNAs that are found in the common deleted region of 5q syndrome to the unique features of this disease.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, M. S. et al. Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q syndrome. Blood 118, 4666–4673 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pellagatti, A. et al. Haploinsufficiency of RPS14 in 5q syndrome is associated with deregulation of ribosomal- and translation-related genes. Br. J. Haematol. 142, 57–64 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Barlow, J. L. et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q syndrome. Nature Med. 16, 59–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kruse, J. P. & Gu, W. Modes of p53 regulation. Cell 137, 609–622 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell. 136, 215–233 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Khraiwesh, B. et al. Transcriptional control of gene expression by microRNAs. Cell 140, 111–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garzon, R. et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hussein, K. et al. Aberrant microRNA expression pattern in myelodysplastic bone marrow cells. Leuk. Res. 34, 1169–1174 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Sokol, L. et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br. J. Haematol. 153, 24–32 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Erdogan, B. et al. Diagnostic microRNAs in myelodysplastic syndrome. Exp. Hematol. 39, 915–926 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Dostalova, M. et al. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur. J. Hum. Genet. 19, 313–319 (2011).

    Article  CAS  Google Scholar 

  51. Votavova, H. et al. Differential expression of microRNAs in CD34+ cells of 5q syndrome. J. Hematol. Oncol. 4, 1 (2010).

    Article  CAS  Google Scholar 

  52. Hussein, K. et al. Expression of myelopoiesis-associated microRNA in bone marrow cells of atypical chronic myeloid leukaemia and chronic myelomonocytic leukaemia. Ann. Hematol. 90, 307–313 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Pons, A. et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk. Lymphoma 50, 1854–1859 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Rhyasen, G. W. & Starczynowski, D. T. Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26, 13–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Boldin, M. P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189–1201 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Galili, N. et al. Prediction of response to therapy with ezatiostat in lower risk myelodysplastic syndrome. J. Hematol. Oncol. 5, 20 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010). The first report to show that the methyltransferase gene DNMT3A is a recurrent mutation in de novo AML and is independently associated with poor outcome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ewalt, M. et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J. 1, e9 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Walter, M. J. et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25, 1153–1158 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010). This study demonstrates that TET2 mutations favour the development of myeloid neoplasms.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  64. Kosmider, O. et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 114, 3285–3291 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, A. E. et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 116, 3923–3932 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Kosmider, O. et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia. 24, 1094–1096 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Thol, F. et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 95, 1668–1674 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Cho, Y. S., Kim, E. J., Park, U. H., Sin, H. S. & Um, S. J. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J. Biol. Chem. 281, 17588–17598 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, S. W. et al. ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. J. Biol. Chem. 285, 18–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Fisher, C. L. et al. Loss-of-function Additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood 115, 38–46 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Boultwood, J. et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24, 1062–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Thol, F. et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J. Clin. Oncol. 29, 2499–2506 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nature Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Rowley, J. D. Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 16, 109–112 (1973).

    CAS  PubMed  Google Scholar 

  77. Xiao, Z. et al. Molecular characterization of genomic AML1-ETO fusions in childhood leukemia. Leukemia. 15, 1906–1913 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Harada, H. et al. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103, 2316–2324 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Song, W. J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature Genet. 23, 166–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe-Okochi, et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 111, 4297–4308 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Tang, J. L. et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114, 5352–5361 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Bejar, R. et al. Clinical effect of point mutations in myelodysplastic syndromes. N. Engl. J. Med. 364, 2496–2506 (2011). This study reports the somatic mutations found in MDS and the poor prognostic consequences of TP53, EZH2, ETV6, RUNX1 and ASXL mutations.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Kita-Sasai, Y. et al. International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br. J. Haematol. 115, 309–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Haferlach, C. et al. The inv(3)(q21q26)/t(3;3)(q21;q26) is frequently accompanied by alterations of the RUNX1, KRAS and NRAS and NF1 genes and mediates adverse prognosis both in MDS and in AML: a study in 39 cases of MDS or AML. Leukemia. 25, 874–877 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Szpurka, H. et al. Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. Blood 108, 2173–2181 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Lea, N. C. et al. The JAK2 V617F mutation is rare in RARS but common in RARS-T. Leukemia 20, 2060–2061 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Malcovati, L. et al. Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood 114, 3538–3545 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Zikria, J., Galili, N., Tsai, W. Y. & Raza, A. Thrombocytosis in myelodysplastic syndromes: not an innocent bystander. J. Blood Disord. Transfus. S3:002 (2012).

    Article  Google Scholar 

  89. Bejar, R. et al. Validation of a prognostic model and the impact of mutations in 288 patients with lower risk myelodysplastic syndromes. J. Clin. Oncol. 30, 3376–3382 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  90. Mohamedali, A. et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 110, 3365–3373 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Gondek, L. P. et al. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111, 1534–1542 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Heinrichs, S. et al. Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. Leukemia 23, 1605–1613 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Tiu, R. V. et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117, 4552–4560 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Evers, C. et al. Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. Genes Chromosomes Cancer 46, 1119–1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Starczynowski, D. T. et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 112, 3412–3424 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). An initial report on mutations in the RNA splicing machinery found in MDS.

    Article  CAS  PubMed  Google Scholar 

  97. Papaemmanuil, E. et al. Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011). This study shows that mutations in the splicing machinery gene SF3B1 are associated with ringed sideroblasts in MDS.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Visconte, V. et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 26, 542–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Makishima, H. et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119, 3203–3210 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nature Genet. 44, 53–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Damm, F. et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 119, 3211–3218 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Patnaik, M. M. et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 119, 569–572 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Thol, F. et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119, 3578–3584 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Haferlach, T. et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J. Clin. Oncol. 28, 2529–2537 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Mills, K. I. et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood 114, 1063–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. List, A. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 355, 1456–1465 (2006). The results of the clinical trial that led to the approval of lenalidomide for del(5q) MDS.

    Article  CAS  PubMed  Google Scholar 

  107. Raza, A. et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 111, 86–93 (2008). This study shows that a percentage of patients with MDS without the del(5q) chromosomal deletion will respond to lenalidomide therapy.

    Article  CAS  PubMed  Google Scholar 

  108. Ebert, B. L. et al. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med. 5, e35 (2008). A microarray analysis revealed an erythroid expression profile that may predict the response to lenalidomide in patients with non-del(5q) MDS.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Westbrook, D. Steensma and E. Estey for their critical reading of the manuscript and their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Raza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Cytopenias

Deficiencies of a cellular lineage of the blood.

Hypolobated micromegakaryocytes

Abnormally small platelet-forming cells (megakaryocytes) with a decreased number of nuclear lobes.

Ringed sideroblasts

Erythroblasts containing a ring of mitochondria filled with granules of ferritin around the nucleus.

Thrombocytosis

High platelet counts in the blood.

Spliceosome

A protein complex that is responsible for the excision of non-coding introns in precursor mRNA molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raza, A., Galili, N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer 12, 849–859 (2012). https://doi.org/10.1038/nrc3321

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3321

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer