Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators

Abstract

The coupling between electrons and phonons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons or phonons in engineered nanosystems, control over their coupling is still widely lacking. Here we demonstrate the ability to fully tailor electron–phonon interactions using a new class of suspended carbon nanotube devices, in which we can form highly tunable single and double quantum dots at arbitrary locations along a nanotube mechanical resonator. We find that electron–phonon coupling can be turned on and off by controlling the position of a quantum dot along the resonator. Using double quantum dots we structure the interactions in real space to couple specific electronic and phononic modes. This tailored coupling allows measurement of the phonons’ spatial parity and imaging of their mode shapes. Finally, we demonstrate coupling between phonons and internal electrons in an isolated system, decoupled from the random environment of the electronic leads, a crucial step towards fully engineered quantum-coherent electron–phonon systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A carbon nanotube mechanical resonator coupled to localized ultraclean quantum dots.
Figure 2: Dependence of dynamical electron–phonon coupling on the electron tunnelling rate.
Figure 3: Spatial dependence of the electron–phonon coupling, and direct imaging of the phonon modes.
Figure 4: Tailored selective coupling between phononic and electronic modes in a double quantum dot.
Figure 5: Coupling of mechanical motion to internal electronic degree of freedom in a double quantum dot, isolated from the leads.

Similar content being viewed by others

References

  1. Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (1993).

    Article  ADS  Google Scholar 

  2. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  ADS  Google Scholar 

  3. Poot, M. & van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012).

    Article  ADS  Google Scholar 

  4. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  5. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  6. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  7. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  8. Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nature Phys. 7, 879–883 (2011).

    Article  ADS  Google Scholar 

  9. Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    Article  ADS  Google Scholar 

  10. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    Article  ADS  Google Scholar 

  11. Aspelmeyer, M., Meystre, P. & Schwab, K. Quantum optomechanics. Phys. Today 65, 29 (2012).

    Article  Google Scholar 

  12. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  ADS  Google Scholar 

  13. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  14. Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotech. 4, 363–367 (2009).

    Article  ADS  Google Scholar 

  15. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  ADS  Google Scholar 

  16. Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nature Phys. 5, 327–331 (2009).

    Article  ADS  Google Scholar 

  17. Hüttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009).

    Article  ADS  Google Scholar 

  18. Ganzhorn, M. & Wernsdorfer, W. Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems. Phys. Rev. Lett. 108, 175502 (2012).

    Article  ADS  Google Scholar 

  19. Lassagne, B. et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    Article  ADS  Google Scholar 

  20. Steele, G. A. et al. Strong coupling between single-electron tunnelling and nanomechanical motion. Science 325, 1103–1107 (2009).

    Article  ADS  Google Scholar 

  21. Woodside, M. T. & McEuen, P. L. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296, 1098–1101 (2002).

    Article  ADS  Google Scholar 

  22. Waissman, J. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotech. 8, 569–574 (2013).

    Article  ADS  Google Scholar 

  23. Meerwaldt, H. B. et al. Probing the charge of a quantum dot with a nanomechanical resonator. Phys. Rev. B 86, 115454 (2012).

    Article  ADS  Google Scholar 

  24. Garcia-Sanchez, D. et al. Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99, 085501 (2007).

    Article  ADS  Google Scholar 

  25. Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    Article  ADS  Google Scholar 

  26. Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  ADS  Google Scholar 

  27. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  28. Pei, F., Laird, E. A., Steele, G. A. & Kouwenhoven, L. P. Valley-spin blockade and spin resonance in carbon nanotubes. Nature Nanotech. 7, 630–4 (2012).

    Article  ADS  Google Scholar 

  29. Cirac, J. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  30. Turchette, Q. et al. Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge O. Auslaender, E. Berg, F. Kuemmeth, P. L. McEuen, A. Shnirman and A. Yacoby for useful discussions and comments on the manuscript, and D. Mahalu for the electron-beam writing. S.I. acknowledges the financial support by the Legacy Heritage Foundation (ISF, No. 1267/12), the Bi-National Science Foundation (BSF, No. 710647-03), the Minerva foundation (No. 780054), the ERC starters grant (QUANT-DES-CNT, No. 258753), the Marie Curie People grant (IRG, No. 239322), and the Alon fellowship. S.I. is incumbent of the Z. William and E. B. Novick career development chair. F.v.O. acknowledges support through Schwerpunktprogramm SPP 1459, SFB 658 and a Helmholtz Virtual Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.B., A.H. and S.I. performed the experiments, analysed the data and contributed to its theoretical interpretation. S.V.K. and F.v.O. developed the theoretical model.

Corresponding author

Correspondence to S. Ilani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benyamini, A., Hamo, A., Kusminskiy, S. et al. Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nature Phys 10, 151–156 (2014). https://doi.org/10.1038/nphys2842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing