Reviews & Analysis

Filter By:

Article Type
Year
  • Laser-based Doppler cooling is a popular method for reducing the temperature of atoms, but it is limited to dilute gases. Now, researchers in Germany have demonstrated a laser scheme for cooling a highly dense gas mixture.

    • Mansoor Sheik-Bahae
    • Denis Seletskiy
    News & Views
  • Mechanically manipulating the lateral size of the lasing mode of a single-mode terahertz quantum cascade laser provides a new and robust method for widely and continuously tuning its emission wavelength.

    • Claire Gmachl
    News & Views
  • The integration of an optically pumped switch in a quantum cascade laser device yields a semiconductor terahertz amplifier that promises to extend the capabilities of time-domain spectroscopy.

    • Alessandro Tredicucci
    • Aldo Di Carlo
    News & Views
  • The demonstration that polarized laser pulses can control molecular velocities through the dipole force suggests that the cooling of molecules using light may soon be within reach.

    • Juan Ortigoso
    • Mirta Rodríguez
    News & Views
  • Stanford University researchers have demonstrated the potential of single SiC whiskers to function as narrowband infrared emitters that have controllable emission characteristics.

    • Rainer Hillenbrand
    • Javier Aizpurua
    News & Views
  • Customizing the refractive index of wells and barriers in a periodic array of quantum wells yields a way to control the reflectivity and dispersion of an excitonic lattice. The result is a new method for slowing or modulating light.

    • Hyatt M. Gibbs
    • Galina Khitrova
    News & Views
  • Controlling the transport of charge carriers between two semiconductor nanostructures using an acoustic wave yields a high-repetition-rate source of single photons with tunable emission energy.

    • John Cunningham
    News & Views
  • Researchers at Stanford University and the Max Planck Institute for Polymer Research have demonstrated fluorescence enhancements ten times greater than previously demonstrated, by placing single fluorophores in an optical bowtie nano-antenna.

    • Christopher C. Davis
    News & Views
  • Visual encryption, manipulation of terahertz waves and the improved surface-treatment of GaN crystals were all topics of discussion at this year's JSAP meeting in Toyama, Japan.

    • Noriaki Horiuchi
    News & Views
  • The news that spherical droplets of a liquid crystal can function as whispering-gallery-mode microresonators with an unprecedented width of wavelength tunability could be good news for fabricating new kinds of sensors and lasers.

    • Hiroshi Yokoyama
    News & Views
  • The use of cascaded nonlinear silicon waveguides that function as 'time lenses' is providing new opportunities for generating and measuring ultrafast optical waveforms.

    • David J. Richardson
    News & Views
  • Interconnects and switches relying on excitons — quasiparticles consisting of bound electron–hole pairs — may offer a promising energy-efficient alternative to electrons in wires for future electronic circuitry.

    • Marc Baldo
    • Vladimir Stojanović
    News & Views
  • Accurate frequency measurements of a narrow optical clock transition in 171Yb atoms trapped in an optical lattice establish this system as a serious contender in the quest to develop increasingly accurate atomic clocks.

    • Helen S. Margolis
    News & Views
  • Could hexagonal boron nitride turn out to be the answer for a practical and compact source of deep-ultraviolet light? Although initial results are promising, the challenge for the future is in improving the fabrication technology.

    • Christoph E. Nebel
    News & Views
  • High-resolution microscopy, lithography and materials analysis all look set to benefit from the emergence of compact and efficient table-top soft-X-ray lasers.

    • Rachel Won
    News & Views