Reviews & Analysis

Filter By:

Article Type
Year
  • Researchers in the field of quantum optics are focusing not only on applications such as quantum key distribution systems, but also on fundamental investigations into phenomena illustrating the quantum nature of photons, such as quantum discord and non-Markovian behaviour.

    • Noriaki Horiuchi
    News & Views
  • Multifunctional organic materials can be used to make optically tunable organic transistors that can operate on microsecond timescales, thus opening new perspectives in the design of organic integrated circuits.

    • J. Sayago
    • F. Rosei
    • C. Santato
    News & Views
  • X-ray free-electron lasers are bright, femtosecond X-ray sources. Researchers have now operated one in a seeding scheme that allows X-ray pulse output approaching the single-mode ideal and produces a remarkable enhancement in monochromatic power.

    • Makina Yabashi
    • Takashi Tanaka
    News & Views
  • Spin waves show promise as a means of transporting information in integrated magnetic devices, but convenient ways to control their properties are required. Now directional control of spin-wave emission using photonics has been demonstrated in an all-optical pump–probe experiment.

    • Mark R. Freeman
    • Zhu Diao
    News & Views
  • The implementation of a quantum Wheeler's delayed-choice experiment defies the conventional boundaries set by the complementarity principle and shows photons coherently oscillating between particle and wave behaviours in a single experimental set-up.

    • Gerardo Adesso
    • Davide Girolami
    News & Views
  • The demonstration of edge- and surface-emitting lasers made by transfer-printing epitaxial layers of compound semiconductors onto silicon substrates creates new opportunities for optoelectronics.

    • Robert W. Kelsall
    News & Views
  • A three-dimensional imaging technique that harnesses reflected, coherent X-rays promises the ability to image nanomaterials within substrates.

    • Adrian P. Mancuso
    • Garth J. Williams
    News & Views
  • Scientists have shown that Förster resonance energy transfer can be used to realize new designs of dye laser that offer improved photostability and access to new pumping and emission wavelengths.

    • José M. G. Martinho
    News & Views
  • Advances in electron optics and X-ray detection are opening up the periodic table to one of the ultimate goals of microanalysis — single-atom spectroscopy.

    • Michael Walls
    News & Views
  • The world's second hard-X-ray free-electron laser has now been commissioned in Japan. The facility's compact accelerator and short-period undulator not only minimize space and cost but also ensure excellent output stability.

    • Zhirong Huang
    • Ingolf Lindau
    News & Views
  • A single sheet of graphene dramatically changes the nonlinear response of a silicon photonic crystal, enabling ultralow-power optical bistability, self-induced regenerative oscillation and coherent four-wave mixing.

    • Kinam Kim
    • Seong-Ho Cho
    • Chang-Won Lee
    News & Views
  • Over the past five decades, breakthroughs in device design and advances in material and growth technologies have transformed semiconductor lasers from laboratory curiosities into practical devices with real-world applications.

    • Rachel Won
    News & Views
  • The reciprocity of light pulse propagation in a disordered photonic structure can be 'switched off' by creating a local, ultrafast nonlinearity.

    • Diederik S. Wiersma
    News & Views
  • Using a real-time measurement technique to study the single-shot properties of modulation instability, scientists have shown that its initial stochastic nature in an optical system can lead to specific correlation properties in both the spectral and temporal domains.

    • Arnaud Mussot
    • Alexandre Kudlinski
    News & Views
  • Researchers in the field of metamaterials are not only making advances in existing areas of plasmon dispersion control and slow-light propagation in photonic crystals, but also tackling new topics such as quantum metamaterials.

    • David Pile
    News & Views
  • Phase-space optics is an indispensable tool for optical imaging and sensing. New optical hardware for light-field photography and pupil engineering for imaging with extended depth of field promote the use of phase-space representations as the primary object of optical signal processing.

    • Markus Testorf
    News & Views
  • Exploiting the spatial shapes of 'twisted' photons makes it possible to enhance the bit rate of free-space optical communications without requiring more bandwidth.

    • Juan P. Torres
    News & Views