Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical parametric oscillation with distributed feedback in cold atoms

Abstract

There is currently a strong interest in mirrorless lasing systems1, in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers2 and photonic crystal lasers3. The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success4,5,6. Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing7,8) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the set-up.
Figure 3: Emitted laser power and maximum FWM reflectivity as a function of pump power.
Figure 2: Transverse mode of the emitted beam.

Similar content being viewed by others

References

  1. Special issue on Nano and Random Laser. J. Opt. 12, 020201–024014 (2010).

  2. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  3. Noda, S. Photonic crystal lasers – ultimate nanolasers and broad-area coherent lasers. J. Opt. Soc. Am. B 27, B1–B8 (2010).

    Article  Google Scholar 

  4. Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nature Phys. 4, 794–798 (2008).

    Article  ADS  Google Scholar 

  5. Mahler, L. et al. Quasi-periodic distributed feedback laser. Nature Photon. 4, 165–169 (2010).

    Article  ADS  Google Scholar 

  6. Noh, H. et al. Control of lasing in biomimetic structures with short-range order. Phys. Rev. Lett. 106, 183901 (2011).

    Article  ADS  Google Scholar 

  7. Kogelnik, H. & Shank, C. V. Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971).

    Article  ADS  Google Scholar 

  8. Yariv, A. Quantum Electronics 3rd edn (Wiley, 1988).

    Google Scholar 

  9. Gottardo, S. et al. Resonance-driven random lasing. Nature Photon. 2, 429–432 (2008).

    Article  Google Scholar 

  10. Guerin, W., Michaud, F. & Kaiser, R. Mechanisms for lasing with cold atoms as the gain medium. Phys. Rev. Lett. 101, 093002 (2008).

    Article  ADS  Google Scholar 

  11. Vrijsen, G., Hosten, O., Lee, J., Bernon, S. & Kasevich, M. A. Raman lasing with a cold atom gain medium in a high-finesse optical cavity. Phys. Rev. Lett. 107, 063904 (2011).

    Article  ADS  Google Scholar 

  12. Labeyrie, G. et al. Slow diffusion of light in a cold atomic cloud. Phys. Rev. Lett. 91, 223904 (2003).

    Article  ADS  Google Scholar 

  13. Froufe-Pérez, L. S., Guerin, W., Carminati, R. & Kaiser, R. Threshold of a random laser with cold atoms. Phys. Rev. Lett. 102, 173903 (2009).

    Article  ADS  Google Scholar 

  14. Guerin, W. et al. Towards a random laser with cold atoms. J. Opt. 12, 024002 (2010)

    Article  ADS  Google Scholar 

  15. Schilke, A., Zimmermann, C., Courteille, P. W. & Guerin, W. Photonic band gaps in one-dimensionally ordered cold atomic vapors. Phys. Rev. Lett. 106, 223903 (2011).

    Article  ADS  Google Scholar 

  16. Abrams, R. L. & Lind, R. C. Degenerate four-wave mixing in absorbing media. Opt. Lett. 2, 94–96 (1978); erratum 3, 205 (1978).

    Article  ADS  Google Scholar 

  17. Leite, M. R. R., Simoneau, P., Bloch, D., Le Boiteux, D. & Ducloy, M. Continuous-wave phase-conjugate self-oscillation induced by Na-vapour degenerate four-wave mixing with gain. Europhys. Lett. 2, 747–753 (1986).

    Article  ADS  Google Scholar 

  18. Pinard, M., Grandclement, D. & Grynberg, G. Continuous-wave self-oscillation using pair production of photons in four-wave mixing in sodium. Europhys. Lett. 2, 755–760 (1986).

    Article  ADS  Google Scholar 

  19. Lezama, A., Cardoso, G. C. & Tabosa, J. W. R. Polarization dependence of four-wave mixing in a degenerate two-level system. Phys. Rev. A 63, 013805 (2000).

    Article  ADS  Google Scholar 

  20. Vallet, M., Pinard, M. & Grynberg, G. Generation of twin photon beams in a ring four-wave mixing oscillator. Europhys. Lett. 11, 739–744 (1990).

    Article  ADS  Google Scholar 

  21. Inoue, K., Mukai, T. & Saitoh, T. Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier. Appl. Phys. Lett. 51, 1051–1053 (1987).

    Article  ADS  Google Scholar 

  22. Mecozzi, A., D'Ottavi, A. & Hui, R. Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold. IEEE J. Quantum. Electron. 29, 1477–1487 (1993).

    Article  ADS  Google Scholar 

  23. McGloin M. & Dholakia, K. Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2004).

    Article  ADS  Google Scholar 

  24. Zibrov, A. S., Lukin, M. D., Hollberg, L. & Scully, M. O. Efficient frequency up-conversion in resonant coherent media. Phys. Rev. A 65, 051801(R) (2002).

    Article  ADS  Google Scholar 

  25. Schultz, J. T. et al. Coherent 455 nm beam production in a cesium vapor. Opt. Lett. 34, 2321–2323 (2009).

    Article  ADS  Google Scholar 

  26. Akulshin, A. M., McLean, R. J., Sidorov, A. I. & Hannaford, P. Coherent and collimated blue light generated by four-wave mixing in Rb vapour. Opt. Express 17, 22861–22870 (2009).

    Article  ADS  Google Scholar 

  27. Vernier, A., Franke-Arnold, S., Riis, E. & Arnold, A. S. Enhanced frequency up-conversion in Rb vapor. Opt. Express 18, 17020–17026 (2010).

    Article  ADS  Google Scholar 

  28. Antezza, M. & Castin, Y. Fano–Hopfield model and photonic band gaps for an arbitrary atomic lattice. Phys. Rev. A 80, 013816 (2009).

    Article  ADS  Google Scholar 

  29. Zimmermann, C., Vuletic, V., Hemmerich, A., Ricci, L. & Hänsch, T. W. Design for a compact tunable Ti:sapphire laser. Opt. Lett. 20, 297–299 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Alexander von Humboldt foundation, the Deutsche Forschungsgemeinschaft (DFG) and the Research Executive Agency (program COSCALI, no. PIRSES-GA-2010-268717).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and W.G. performed the experiment and analysed the data, W.G. supervised the project and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to William Guerin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilke, A., Zimmermann, C., Courteille, P. et al. Optical parametric oscillation with distributed feedback in cold atoms. Nature Photon 6, 101–104 (2012). https://doi.org/10.1038/nphoton.2011.320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing