Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonics for near-field nano-imaging and superlensing

Diffraction of light prevents optical microscopes from having spatial resolution beyond a value comparable to the wavelength of the probing light. This essentially means that visible light cannot image nanomaterials. Here we review the mechanism for going beyond this diffraction limit and discuss how manipulation of light by means of surface plasmons propagating along the metal surface can help to achieve this. The interesting behaviour of light under the influence of plasmons not only allows superlensing, in which perfect imaging is possible through a flat thin metal film, but can also provide nano-imaging of practical samples by using a localized surface plasmon mode at the tip of a metallic nanoprobe. We also discuss the current research status and some intriguing future possibilities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Slow light on metal surface.
Figure 2: Experimental demonstration of subwavelength imaging through a thin silver layer.
Figure 3: Commonly used metallic nanoprobes.
Figure 4: Light field enhancement at metallic nanostructures.
Figure 5: High-resolution imaging through tip-enhancement effects.
Figure 6: Higher resolution in TERS through mechanical and chemical effects.

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9, 413–420 (1873).

    Google Scholar 

  2. Sommerfeld, A. Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes. Ann. Phys. Chem. 303, 233–290 (1899).

    ADS  MATH  Google Scholar 

  3. Heisenberg, W. Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927).

    ADS  MATH  Google Scholar 

  4. Inouye, Y. & Kawata, S. Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159–161 (1994).

    ADS  Google Scholar 

  5. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  6. Smith, D. R., Schurig, D., Rosenbluth, M. & Schultz, S. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).

    ADS  Google Scholar 

  7. Born, M. & Wolf, E. Principles of Optics (Pergamon, 1959).

    MATH  Google Scholar 

  8. Smolyaninov, I. I., Davis, C. C., Elliott, J. & Zayats, A. V. Resolution enhancement of a surface immersion microscope near the plasmon resonance. Opt. Lett. 30, 382–384 (2005).

    ADS  Google Scholar 

  9. Raether, H. Surface Plasmons (Springer, 1998).

    Google Scholar 

  10. Bozhevolnyi, S. I., Vohnsen, B., Smolyaninov, I. I. & Zayats, A. V. Direct observation of surface polariton localization caused by surface roughness. Opt. Commun. 117, 417–423 (1995).

    ADS  Google Scholar 

  11. Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396–402 (1902).

    Google Scholar 

  12. Kawata, S. Near Field Optics and Surface Plasmon Polariton (Springer, 2001).

    Google Scholar 

  13. Podolskiy, V. A. & Narimanov, E. E. Near-sighted superlens. Opt. Lett. 30, 75–77 (2005).

    ADS  Google Scholar 

  14. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

    Google Scholar 

  15. Fang, N. & Zhang, X. Imaging properties of metamaterial superlens. Appl. Phys. Lett. 82, 161–163 (2003).

    ADS  Google Scholar 

  16. Rao, X. R. & Ong, K. C. Subwavelength imaging by a left-handed material superlens. Phys. Rev. E68, 067601 (2003).

    Google Scholar 

  17. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    ADS  Google Scholar 

  18. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited optics. Science 315, 1686 (2007).

    ADS  Google Scholar 

  19. Smolyaninov, I. I., Hung, Y. J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).

    ADS  Google Scholar 

  20. Shvets, G., Trendafilov, S., Pendry, J. B. & Sarychev, A. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 53903 (2007).

    ADS  Google Scholar 

  21. Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).

    Google Scholar 

  22. Kawata. S. & Shalaev, V. M. Tip-Enhancement (Elsevier, 2007).

    Google Scholar 

  23. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B103, 8410–8426 (1999).

    Google Scholar 

  24. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    ADS  Google Scholar 

  25. Prodan, E. M., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    ADS  Google Scholar 

  26. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Near-field Raman scattering enhanced by a metalized tip. Chem. Phys. Lett. 335, 369–374 (2001).

    ADS  Google Scholar 

  27. Barsegova, I. et al. Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: Enhancement of second-harmonic generation. Appl. Phys. Lett. 81, 3461–3463 (2002).

    ADS  Google Scholar 

  28. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    ADS  Google Scholar 

  29. Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    ADS  Google Scholar 

  30. Gleyzes, P., Boccara, A. C. & Bachelot, R. Near field optical microscopy using a metallic vibrating tip. Ultramicroscopy 57, 318–322 (1995).

    Google Scholar 

  31. Zenhausern, F., O'Boyle, M. P. & Wickramasinghe, H. K. Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994).

    ADS  Google Scholar 

  32. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    ADS  Google Scholar 

  33. Bachelot, R., Gleyzes, P. & Boccara, A. C. Near-field optical microscopy by local perturbation of a diffraction spot. Microsc. Microanal. Microstruct. 5, 389–397 (1994).

    Google Scholar 

  34. Fischer, U. C. & Pohl, D. W. Observation of single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 62, 458–461 (1989).

    ADS  Google Scholar 

  35. Sugiura, T., Okada, T., Inouye, Y., Nakamura, O. & Kawata, S. Gold-bead scanning near-field optical microscope with laser-force position control. Opt. Lett. 22, 1663–1665 (1997).

    ADS  Google Scholar 

  36. Krug, J. T. II, Sánchez, E. J. & Xie, X. S. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J. Chem. Phys. 116, 10895–10901 (2002).

    ADS  Google Scholar 

  37. Martin, Y. C., Hamann, H. F. & Wickramasinghe, H. K. Strength of the electric field in apertureless near-field optical microscopy. J. Appl. Phys. 89, 5774–5778 (2001).

    ADS  Google Scholar 

  38. Martin, O. J. F. & Girard, C. Controlling and tuning strong optical field gradient at a local probe microscope tip apex. Appl. Phys. Lett. 70, 705–707 (1997).

    ADS  Google Scholar 

  39. Fischer, U. C., Koglin, J. & Fuchs, H. The tetrahedral tip as a probe for scanning near-field optical microscopy at 30 nm resolution. J. Microsc. 176, 231–237 (1994).

    Google Scholar 

  40. Koglin, J., Fischer, U. C. & Fuchs, H. Material contrast in scanning near-field optical microscopy at 1–10 nm resolution. Phys. Rev. B. 55, 7977–7984 (1997).

    ADS  Google Scholar 

  41. Furukawa, H. & Kawata, S. Local field enhancement with an apertureless near-field-microscope probe. Opt. Commun. 148, 221–224 (1998).

    ADS  Google Scholar 

  42. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Google Scholar 

  43. Kottmann, J. P., Martin, O. J. F., Smith, D. R. & Schultz, S. Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem. Phys. Lett. 341, 1–6 (2001).

    ADS  Google Scholar 

  44. Tian, Z.-Q., Ren, B. & Wu, D.-Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B. 106, 9463–9483 (2002).

    Google Scholar 

  45. Talley, C. E. et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005).

    ADS  Google Scholar 

  46. Su, K.-H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    ADS  Google Scholar 

  47. Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 17402 (2005).

    ADS  Google Scholar 

  48. Farahani, J. N. et al. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18, 125506 (2007).

    ADS  Google Scholar 

  49. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Google Scholar 

  50. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    ADS  Google Scholar 

  51. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    ADS  Google Scholar 

  52. Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Etrl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 096101 (2004).

    ADS  Google Scholar 

  53. Futamata, M., Maruyama, Y. & Ishikawa, M. Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. J. Mol. Struct. 735, 75–84 (2005).

    ADS  Google Scholar 

  54. Hao, F. & Nordlander, P. Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Appl. Phys. Lett. 89, 103101 (2006).

    ADS  Google Scholar 

  55. Le, F., Lwin, N. Z., Halas, N. J. & Nordlander, P. Plasmonic interactions between a metallic nanoshell and a thin metallic film. Phys. Rev. B76, 165410 (2007).

    Google Scholar 

  56. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    ADS  Google Scholar 

  57. Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    Google Scholar 

  58. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    ADS  Google Scholar 

  59. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    ADS  Google Scholar 

  60. Yeo, B. S., Schmid, T., Zhang, W. & Zenobi, R. Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal. Bioanal. Chem. 387, 2655–2662 (2007).

    Google Scholar 

  61. Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y. & Kawata, S. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92, 220801 (2004).

    ADS  Google Scholar 

  62. Hayazawa, N., Motohashi, M., Saito, Y. & Kawata, S. Highly sensitive strain detection in strained silicon by surface-enhanced Raman spectroscopy. Appl. Phys. Lett. 86, 263114 (2005).

    ADS  Google Scholar 

  63. Lee, N. et al. High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38, 789–796 (2007).

    ADS  Google Scholar 

  64. Verma, P., Yamada, K., Watanabe, H., Inouye, Y. & Kawata, S. Near-field Raman scattering investigation of tip effects on C60 molecules. Phys. Rev. B73, 045416 (2006).

    ADS  Google Scholar 

  65. Domke, K. F., Zhang, D. & Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 129, 6708–6709 (2007).

    Google Scholar 

  66. Rasmussen, A. & Deckert, V. Surface- and tip-enhanced Raman scattering of DNA components. J. Raman Spectrosc. 37, 311–317 (2006).

    ADS  Google Scholar 

  67. Zhang, W. H., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Google Scholar 

  68. Hartschuh, A., Qian, H., Meixner, A. J., Anderson, N. & Novotny, L. Nanoscale optical imaging of single-walled carbon nanotubes. J. Lumin. 119–120, 204–208 (2006).

    Google Scholar 

  69. Yano, T., Verma, P., Kawata, S. & Inouye, Y. Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles. Appl. Phys. Lett. 88, 093125 (2006).

    ADS  Google Scholar 

  70. Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).

    ADS  Google Scholar 

  71. Yang, H. et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003).

    ADS  Google Scholar 

  72. Lakowicz, J. R. et al. Advances in surface-enhanced fluorescence. J. Fluoresc. 14, 425–441 (2004).

    Google Scholar 

  73. Bharadwaj, P., Anger, P. & Novotny, L. Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18, 44017 (2007).

    Google Scholar 

  74. Gerton, J. M. et al. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93, 180801 (2004).

    ADS  Google Scholar 

  75. Ma, Z., Gerton, J. M., Wade, L. A. & Quake, S. R. Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys. Rev. Lett. 97, 260801 (2006).

    ADS  Google Scholar 

  76. Huang, F. M., Festy, F. & Richards, D. Tip-enhanced fluorescence imaging of quantum dots. Appl. Phys. Lett. 87, 183101 (2005).

    ADS  Google Scholar 

  77. Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

    ADS  Google Scholar 

  78. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    ADS  Google Scholar 

  79. Hartschuh, A., Qian, H., Meixner, A. J., Anderson, N. & Novotny, L. Nanoscale optical imaging of excitons in single-walled carbon nanotubes. Nano Lett. 5, 2310–2313 (2005).

    ADS  Google Scholar 

  80. Höppener, C. & Novotny, L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008).

    ADS  Google Scholar 

  81. Höppener, C. & Novotny, L. Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology 19, 384012 (2008).

    Google Scholar 

  82. Xu, H.-X., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

    ADS  Google Scholar 

  83. Weiβ, J. et al. The unimolecular dissociation of the OH stretching states of HOCl: Comparison with experimental data. J. Chem. Phys. 115, 8880–8887 (2001).

    ADS  Google Scholar 

  84. Hildebrandt, P. & Stockburger, M. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935–5944 (1984).

    Google Scholar 

  85. Corni, S. & Tomasi, J. Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study. J. Chem. Phys. 116, 1156–1164 (2002).

    ADS  Google Scholar 

  86. Peleg, G. et al. Gigantic optical non-linearities from nanoparticle-enhanced molecular probes with potential for selectively imaging the structure and physiology of nanometric regions in cellular systems. Bioimaging 4, 215–324 (1996).

    Google Scholar 

  87. Peleg, G., Lewis, A., Linial, M. & Loew, L. M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl Acad. Sci. USA 96, 6700–6705 (1999).

    ADS  Google Scholar 

  88. Xu, H., Bjerneld, E. J., Kall, M. & Borjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

    ADS  Google Scholar 

  89. Doering, W. E. & Nie, S. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 106, 311–317 (2002).

    Google Scholar 

  90. Futamata, M., Maruyama, Y. & Ishikawa, M. Metal nanostructures with single molecule sensitivity in surface enhanced Raman scattering. Vib. Spectrosc. 35, 121–129 (2004).

    Google Scholar 

  91. Xu, H. X., Aizpurua, J., Kall, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000).

    ADS  Google Scholar 

  92. Otto, A., Mrozek, I., Grabhorn, H. & Akemann, W. Surface-enhanced Raman scattering. J. Phys. Condens. Matter 4, 1143–1212 (1992).

    ADS  Google Scholar 

  93. Stöckle, R. M., Deckert, V., Fokas, C., Zeisel, D. & Zenobi, R. Sub-wavelength Raman spectroscopy on isolated silver islands. Vib. Spectrosc. 22, 39–48 (2000).

    Google Scholar 

  94. Le Ru, E. C., Meyer, M. & Etchegoin, P. G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110, 1944–1948 (2006).

    Google Scholar 

  95. Yano, T., Inouye, Y. & Kawata, S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett. 6, 1269–1273 (2006).

    ADS  Google Scholar 

  96. Bharadwaj, P. & Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266–14274 (2007).

    ADS  Google Scholar 

  97. Ichimura, T. et al. Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure. Phys. Rev. Lett. 102, 186101 (2009).

    ADS  Google Scholar 

  98. Ichimura, T. et al. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J. Phys. Chem. C 111, 9460–9464 (2007).

    Google Scholar 

  99. Taguchi, A., Hayazawa, N., Furusawa, K., Ishitobi, H. & Kawata, S. Deep-UV tip-enhanced Raman scattering. J. Raman Spectrosc. doi:10.1002/jrs.2287 (2009).

  100. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surface. Science 305, 847–848 (2004).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Core Research for Educational Science and Technology (CREST) project of the Japan Science and Technology Corporation, and by the RIKEN Extreme Photonics programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Kawata or Prabhat Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon 3, 388–394 (2009). https://doi.org/10.1038/nphoton.2009.111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing