Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric superstructure formed in a block copolymer via phase separation

Abstract

Self-assembly of amphiphilic block copolymers into well-ordered structures has attracted significant interest over the past decade. An especially attractive application of block-copolymer self-assembly is the formation of isoporous membranes. A major problem in this process is the lack of sufficient long-range order and the difficulty of up-scaling due to the time-consuming preparation steps. Here, we report an innovative and simple method to prepare isoporous membranes with nanometre-sized pores. The combination of the industrially well-established membrane formation method by non-solvent-induced phase separation with the self-assembly of a block copolymer is demonstrated. The result is the creation of an integral asymmetric membrane of a block copolymer with a highly ordered thin layer on top of a non-ordered sponge-like layer. This straightforward and very fast one-step procedure for membrane formation is reported for the first time. The developed membrane has the potential for highly selective separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of the cross-sectional morphology of the asymmetric PS-b-P4VP diblock-copolymer film at different magnifications.
Figure 2: SEM images of the surface of the asymmetric PS-b-P4VP diblock-copolymer film.
Figure 3: AFM images of the film surface of the asymmetric PS-b-P4VP diblock-copolymer film (1 μm×1 μm).
Figure 4: TEM images of ultrathin sections of the cross-sectional morphology of the asymmetric PS-b-P4VP diblock copolymer embedded in an epoxy resin and stained with iodine.
Figure 5: Schematic diagram of the asymmetric film formation process.

Similar content being viewed by others

References

  1. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  2. Ruzette, A. & Leibler, L. Block copolymers in tomorrow’s plastics. Nature Mater. 4, 19–31 (2005).

    Article  CAS  Google Scholar 

  3. Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).

    Article  CAS  Google Scholar 

  4. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).

    Article  CAS  Google Scholar 

  5. Bates, F. S. & Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  6. Hamley, I. The Physics of Block Copolymers (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  7. Abetz, V. & Simon, P. F. W. Phase behaviour and morphologies of block copolymers. Adv. Polym. Sci. 189, 125–212 (2005).

    Article  CAS  Google Scholar 

  8. Krappe, U., Stadler, R. & Voigt-Martin, I. Chiral assembly in amorphous ABC triblock copolymers—formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers. Macromolecules 28, 4558–4561 (1995).

    Article  CAS  Google Scholar 

  9. Li, M., Coenjarts, C. A. & Ober, C. K. Patternable block copolymers. Adv. Polym. Sci. 190, 183–226 (2005).

    Article  CAS  Google Scholar 

  10. Hillmyer, M. A. Nanoporous materials from block copolymer precursors. Adv. Polym. Sci. 190, 137–181 (2005).

    Article  CAS  Google Scholar 

  11. Yang, S. Y. et al. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 709–712 (2006).

    Article  CAS  Google Scholar 

  12. Breiner, U., Krappe, U., Thomas, E. L. & Stadler, R. Structural characterization of the “knitting pattern” in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methylmethacrylate) triblock copolymers. Macromolecules 31, 135–141 (1998).

    Article  CAS  Google Scholar 

  13. Ott, H., Abetz, V. & Altstädt, V. Morphological studies of poly(styrene)-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) in the composition region of the “knitting pattern” morphology. Macromolecules 34, 2121–2128 (2001).

    Article  CAS  Google Scholar 

  14. Riegel, I. C. et al. Dynamics and structure of an amphiphilic triblock copolymer of styrene and 5-(N,N-diethylamino)isoprene in selective solvents. Pure Appl. Chem. 76, 123–131 (2004).

    Article  CAS  Google Scholar 

  15. Gohy, J. F. Block copolymer micelles. Adv. Polym. Sci. 190, 65–136 (2005).

    Article  CAS  Google Scholar 

  16. Nunes, S. P. & Peinemann, K.-V. (eds) Membrane Technology: In the Chemical Industry 2nd, revised and enlarged edn (Wiley-VCH, Weinheim, 2006).

  17. Nunes, S. P. Recent advances in the controlled formation of pores in membranes. Trends Polym. Sci. 5, 187–192 (1997).

    CAS  Google Scholar 

  18. Shishatskiy, S. et al. Polyimide asymmetric membranes for hydrogen separation: Influence of formation conditions on gas transport properties. Adv. Eng. Mater. 8, 390–397 (2006).

    Article  CAS  Google Scholar 

  19. Luxton, A. R., Quig, A., Delvaux, M. J. & Fetters, L. J. Star-branched polymers. 2. Linking reaction involving 2- and 4-vinyl pyridine and dienyl- and styryllithium chain ends. Polymer 19, 1320–1324 (1978).

    Article  CAS  Google Scholar 

  20. Antonietti, M., Heinz, S., Schmidt, M. & Rosenauer, C. Determination of the micelle architecture of polystyrene/poly(4-vinylpyridine) block copolymers in dilute solution. Macromolecules 27, 3276–3281 (1994).

    Article  CAS  Google Scholar 

  21. Förster, S., Zisenis, M., Wenz, E. & Antonietti, M. Micellization of strongly segregated block copolymers. J. Chem. Phys. 104, 9956 (1996).

    Article  Google Scholar 

  22. Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003).

    Article  CAS  Google Scholar 

  23. Zha, W. et al. Origin of the difference in order–disorder transition temperature between polystyrene-block-poly(2-vinylpyridine) and polystyrene-block-poly(4-vinylpyridine) copolymers. Macromolecules 40, 2109–2119 (2007).

    Article  CAS  Google Scholar 

  24. Clarke, C. J. et al. Measurements of the Flory–Huggins interaction parameter for polystyrene-poly(4-vinylpyridine) blends. Macromolecules 30, 4184–4188 (1997).

    Article  CAS  Google Scholar 

  25. Matsen, M. W. & Bates, F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29, 1091–1098 (1996).

    Article  CAS  Google Scholar 

  26. Ikkala, O. & ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

    Article  CAS  Google Scholar 

  27. Sidorenko, A., Tokarev, I., Minko, S. & Stamm, M. Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. J. Am. Chem. Soc. 125, 12211–12216 (2003).

    Article  CAS  Google Scholar 

  28. Lin, Y. H. & Juang, J. H. Onset of entanglement. Macromolecules 32, 181–185 (1999).

    Article  CAS  Google Scholar 

  29. Kim, S. H. et al. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004).

    Article  CAS  Google Scholar 

  30. Auschra, C. & Stadler, R. Synthesis of block copolymers with poly(methyl methacrylate)—P(B-b-MMA), P(EB-b-MMA), P(S-b-B-b-MMA) and P(S-b-EB-b-MMA). Polym. Bull. 30, 257–264 (1993).

    Article  CAS  Google Scholar 

  31. Gauthier, S. & Eisenberg, A. Vinylpyridinium ionomers. 2. Styrene-based ABA block copolymers. Macromolecules 20, 760 (1987).

    Article  CAS  Google Scholar 

  32. Zhu, J., Eisenberg, A. & Lennox, R. B. Interfacial behavior of block polyelectrolytes. 1. Evidence for novel surface micelle formation. J. Am. Chem. Soc. 113, 5583 (1991).

    Article  CAS  Google Scholar 

  33. Bossé, F., Schreiber, H. P. & Eisenberg, A. Specific adsorption of some styrene vinylpyridine diblocks from selective solvents onto solid substrates—an NMR-study. Macromolecules 26, 6447–6454 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Lademann for help in synthesizing the block copolymer, G. Johannsen for help in preparation of the films and M. Schossig and M. Aderhold for the SEM images. The authors are grateful to C. Abetz for the AFM and TEM investigations and A. Boschetti-de-Fierro for some helpful comments. This work was supported by the European Commission (project COMPOSE, contract NMP3-CT-2003-505633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Abetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peinemann, KV., Abetz, V. & Simon, P. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Mater 6, 992–996 (2007). https://doi.org/10.1038/nmat2038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing