Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy

Abstract

Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400–2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four lowland Amazonian study landscapes totalling more than 37,000 ha on two rivers.
Figure 2: Remote sensing of multiple canopy chemical traits across two Amazonian landscapes.
Figure 3: Spatial distributions of remotely sensed canopy traits in floodplain forests on four lowland Amazonian landscapes.
Figure 4: Intra-landscape and inter-landscape changes in remotely sensed canopy traits in lowland Amazonia.
Figure 5: Intra-landscape and inter-landscape shifts in canopy chemistry along lowland Amazonian rivers.

References

  1. von Humboldt, A. Aspects of Nature in Different Lands and Different Climates (Lea and Blanchard, 1850).

    Google Scholar 

  2. Tilman, D. Functional diversity. Encycl. Biodiv. 3, 109–120 (2001).

    Article  Google Scholar 

  3. Ostle, N. J. et al. Integrating plant-soil interactions into global carbon cycle models. J. Ecol. 97, 851–863 (2009).

    Google Scholar 

  4. Fine, P. V. A. et al. The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).

    Article  Google Scholar 

  5. Asner, G. P. & Martin, R. E. Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytol. 189, 999–1012 (2011).

    Article  Google Scholar 

  6. ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).

    Article  Google Scholar 

  7. Quesada, C. et al. Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeoscience 6, 3993–4057 (2009).

    Article  Google Scholar 

  8. Asner, G. P. et al. Amazonian functional diversity from forest canopy chemical assembly. Proc. Natl Acad. Sci. USA 111, 5604–5609 (2014).

    Article  Google Scholar 

  9. Geological Map of Peru (Instituto Geologico Minero y Metalurgico, 2000)

  10. Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    Article  Google Scholar 

  11. Hamilton, S. K., Kellndorfer, J., Lehner, B. & Tobler, M. Remote sensing of floodplain geomorphology as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphology 89, 23–38 (2007).

    Article  Google Scholar 

  12. Rosenqvist, A., Forsberg, B. R., Pimentel, T., Rauste, Y. A. & Richey, J. E. The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain. Int. J. Remote Sensing 23, 1303–1328 (2002).

    Article  Google Scholar 

  13. Féret, J-B. & Asner, G. P. Microtopographic controls on lowland Amazonian canopy diversity from imaging spectroscopy. Ecol. Appl. 24, 1297–1310 (2014).

    Article  Google Scholar 

  14. Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572 (1982).

    Article  Google Scholar 

  15. Weng, J-K. & Chapple, C. The origin and evolution of lignin biosynthesis. New Phytol. 187, 273–285 (2010).

    Article  Google Scholar 

  16. Coley, P. D., Kursar, T. A. & Machado, J-L. Colonization of tropical rain forest leaves by epiphylls: Effects of site and host-plant leaf lifetime. Ecology 74, 619–623 (1993).

    Article  Google Scholar 

  17. Niinemets, U. & Kull, O. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: Implications for foliage morphological plasticity. Tree Physiol. 18, 467–479 (1998).

    Article  Google Scholar 

  18. Asner, G. P. et al. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing Environ. 124, 454–465 (2012).

    Article  Google Scholar 

  19. Kalliola, R., Puhakka, M., Salo, J., Linna, A. & RÃsÃnen, M. Mineral nutrients in fluvial sediments from the Peruvian Amazon. Catena 20, 333–349 (1993).

    Article  Google Scholar 

  20. Kvist, L. P. & Nebel, G. A review of Peruvian flood plain forests: Ecosystems, inhabitants and resource use. Forest Ecol. Manage. 150, 3–26 (2001).

    Article  Google Scholar 

  21. Räsänen, M. E., Salo, J. S., Jungnert, H. & Pittman, L. R. Evolution of the Western Amazon Lowland Relief: Impact of Andean foreland dynamics. Terra Nova 2, 320–332 (1990).

    Article  Google Scholar 

  22. Schuur, E. A. G., Chadwick, O. A. & Matson, P. A. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82, 3182–3196 (2001).

    Article  Google Scholar 

  23. Householder, J. E., Janovec, J. P., Tobler, M. W., Page, S. & Lähteenoja, O. Peatlands of the Madre de Dios River of Peru: Distribution, geomorphology, and habitat diversity. Wetlands 32, 359–368 (2012).

    Article  Google Scholar 

  24. Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).

    Article  Google Scholar 

  25. Richey, J. E. et al. Organic matter and nutrient dynamics in river corridors of the Amazon Basin and their response to anthropogenic change. Geophys. Res. 97, 3787–3804 (1997).

    Google Scholar 

  26. Koerselman, W. & Meuleman, A. F. M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1451 (1997).

    Article  Google Scholar 

  27. Killingbeck, K. T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption efficiency. Ecology 77, 1716–1728 (1996).

    Article  Google Scholar 

  28. Melillo, J. M., Aber, J. D. & Muratore, J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626 (1982).

    Article  Google Scholar 

  29. Chapin, F. S. III, Vitousek, P. M. & Van Cleve, K. The nature of nutrient limitation in plant communities. Am. Nat. 127, 48–58 (1986).

    Article  Google Scholar 

  30. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  Google Scholar 

  31. Nikitina, D., Remizova, L. & Losco, R. L. A preliminary investigation of the soils and geomorphology of a portion of the Madre de Dios Region, Peru. Soil Surv. 52, 40–47 (2011).

    Google Scholar 

  32. Feilhauer, H., Asner, G. P., Martin, R. E. & Schmidtlein, S. Brigthness-normalized partial least squares regression for hyperspectral data. J. Quant. Spectrosc. Radiat. Transfer 111, 1947–1957 (2010).

    Article  Google Scholar 

  33. Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing Environ. 158, 15–27 (2015).

    Article  Google Scholar 

  34. Asner, G. P. et al. Carnegie airborne observatory: In-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems. J. Appl. Remote Sensing 1, 013536 (2007).

    Article  Google Scholar 

  35. Haaland, D. M. & Thomas, E. V. Partial least-squares methods for spectral Analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 60, 1193–1202 (1988).

    Article  Google Scholar 

  36. Asner, G. P. et al. Spectroscopy of canopy chemicals in humid tropical forests. Remote Sensing Environ. 115, 3587–3598 (2011).

    Article  Google Scholar 

  37. Wold, S., Sjostrom, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58, 109–130 (2001).

    Article  Google Scholar 

  38. Chen, S., Hong, X., Harris, C. J. & Sharkey, P. M. Sparse modeling using orthogonal forest regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. 34, 898–911 (2004).

    Article  Google Scholar 

  39. Goodman, R. C. et al. Amazon palm biomass and allometry. Forest Ecol. Manage. 310, 994–1004 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the John D. and Catherine T. MacArthur Foundation. The Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, M. A. N. Baker and G. L. Baker Jr, and W. R. Hearst III.

Author information

Authors and Affiliations

Authors

Contributions

G.P.A. designed and secured funding for the study, and led data collection and analysis steps. G.P.A., C.B.A., R.E.M., D.E.K., R.T. and F.S. carried out data collection and analyses. G.P.A. and R.E.M. wrote the paper.

Corresponding author

Correspondence to Gregory P. Asner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asner, G., Anderson, C., Martin, R. et al. Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nature Geosci 8, 567–573 (2015). https://doi.org/10.1038/ngeo2443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing