Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconciliation of halogen-induced ozone loss with the total-column ozone record

Abstract

The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry–climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the effects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogen-induced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time evolution of global total ozone.
Figure 2: Time evolution of polar springtime total ozone.
Figure 3: Time evolution of halogen-induced ozone loss.
Figure 4: Quantification of chemical amplification of total ozone variability.
Figure 5: Comparison of stratospheric partial column ozone changes with observations.

Similar content being viewed by others

References

  1. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project Report 52 (WMO, 2011).

    Google Scholar 

  2. United Nations Environment Programme Environmental Effects of Ozone Depletion: 2010 Assessment (UNEP, 2010).

    Google Scholar 

  3. Kiesewetter, G., Sinnhuber, B. M., Weber, M. & Burrows, J. P. Attribution of stratospheric ozone trends to chemistry and transport: A modelling study. Atmos. Chem. Phys. 24, 12073–12089 (2010).

    Article  Google Scholar 

  4. Shepherd, T. G. Dynamics, stratospheric ozone, and climate change. Atmos. Ocean 46, 371–392 (2008).

    Article  Google Scholar 

  5. Hegglin, M. I. & Shepherd, T. G. Large climate-induced changes in UV index and stratosphere-to-troposphere ozone flux. Nature Geosci. 2, 687–691 (2009).

    Article  Google Scholar 

  6. Solomon, S. et al. The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. 101, 6713–6727 (1996).

    Article  Google Scholar 

  7. Eyring, V. et al. Multi-model projections of stratospheric ozone in the 21st century. J. Geophys. Res. 112, D16303 (2007).

    Article  Google Scholar 

  8. Randel, W. J. & Wu, F. A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res. 112, D06313 (2007).

    Google Scholar 

  9. Cionni, I. et al. Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys. 11, 11267–11292 (2011).

    Article  Google Scholar 

  10. Fioletov, V. E., Bodeker, G. E., Miller, A. J., McPeters, R. D. & Stolarski, R. Global and zonal total ozone variations estimated from ground based and satellite measurements: 1964–2000. J. Geophys. Res. 107, 4647 (2002).

    Article  Google Scholar 

  11. Lamarque, J-F. et al. Tropospheric ozone evolution between 1890 and 1990. J. Geophys. Res. 110, D08304 (2005) 10.1029/2004JD005537

    Article  Google Scholar 

  12. Marenco, A., Gouget, H., Nédélec, P., Pagés, J-P. & Karcher, F. Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing. J. Geophys. Res. 99, 16617–16632 (1994).

    Article  Google Scholar 

  13. Parrish, D. D. et al. Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmos. Chem. Phys. 12, 11485–11504 (2012).

    Article  Google Scholar 

  14. Reader, M. C., Plummer, D. A., Scinocca, J. F. & Shepherd, T. G. Contributions to 20th century total column ozone change from halocarbons, tropospheric ozone precursors, and climate change. Geophys. Res. Lett. 40, 6276–6281 (2013).

    Article  Google Scholar 

  15. Mäder, J. A. et al. Statistical modeling of total ozone: Selection of appropriate explanatory variables. J. Geophys. Res. 112, D11108 (2007).

    Article  Google Scholar 

  16. Vyushin, D. I., Fioletov, V. E. & Shepherd, T. G. Impact of long-range correlations on trend detection in total ozone. J. Geophys. Res. 112, D14307 (2007).

    Article  Google Scholar 

  17. Hadjinicolaou, P., Pyle, J. A., Chipperfield, M. P. & Kettleborough, J. A. Effect of interannual meteorological variability on mid-latitude O3. Geophys. Res. Lett. 24, 2993–2996 (1997).

    Article  Google Scholar 

  18. in SPARC Report on the Evaluation of Chemistry-Climate Models (eds Eyring, V., Shepherd, T. G. & Waugh, D. W.) Stratospheric Processes And their Role in Climate. SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526 (SPARC CCMVal, 2010)

  19. Feng, W., Chipperfield, M. P., Dorf, M., Pfeilsticker, K. & Ricaud, P. Mid-latitude ozone changes: Studies with a 3-D CTM forced by ERA-40 analyses. Atmos. Chem. Phys. 9, 2357–2369 (2007).

    Article  Google Scholar 

  20. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 656, 553–597 (2011).

    Article  Google Scholar 

  21. Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 612, 2961–3012 (2005).

    Article  Google Scholar 

  22. Tegtmeier, S. et al. The SPARC Data Initiative: A comparison of ozone climatologies from international limb satellite sounders. J. Geophys. Res. 118, 12229–12247 (2013).

    Google Scholar 

  23. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project Report 50 (WMO, 2007).

    Google Scholar 

  24. Plummer, D. A., Scinocca, J. F., Shepherd, T. G., Reader, M. C. & Jonsson, A. I. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases. Atmos. Chem. Phys. 10, 8803–8920 (2010).

    Article  Google Scholar 

  25. Wegner, T. et al. Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex. Atmos. Chem. Phys. 12, 11095–11106 (2012).

    Article  Google Scholar 

  26. Portmann, R. W. et al. Role of aerosol variations in anthropogenic ozone depletion in the polar regions. J. Geophys. Res. 101, 22991–23006 (1996).

    Article  Google Scholar 

  27. Lamarque, J-F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

    Article  Google Scholar 

  28. Newman, P. A., Daniel, J. S., Waugh, D. W. & Nash, E. R. A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys. 7, 4537–4552 (2007).

    Article  Google Scholar 

  29. Stolarski, R. S., Douglass, A. R., Steensrud, S. & Pawson, S. Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci. 63, 1029–1041 (2006).

    Article  Google Scholar 

  30. Hadjinicolaou, P., Pyle, J. A. & Harris, N. R. P. The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective. Geophys. Res. Lett. 32, 12821 (2005).

    Article  Google Scholar 

  31. Dhomse, S., Weber, M., Wohltmann, I., Rex, M. & Burrows, J. P. On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003. Atmos. Chem. Phys. 6, 1165–1180 (2006).

    Article  Google Scholar 

  32. Telford, P., Braesicke, P., Morgenstern, O. & Pyle, J. Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmos. Chem. Phys. 9, 4251–4260 (2009).

    Article  Google Scholar 

  33. Poberaj, C. S., Staehelin, J. & Brunner, D. Missing stratospheric ozone decrease at Southern Hemisphere middle latitudes after Mount Pinatubo: A dynamical perspective. J. Atmos. Sci. 68, 1922–1945 (2011).

    Article  Google Scholar 

  34. Randel, W. J. & Cobb, J. B. Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res. 99, 5433–5447 (1994).

    Article  Google Scholar 

  35. Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090 (2013).

    Article  Google Scholar 

  36. Scinocca, J., McFarlane, N. A., Lazare, M., Li, J. & Plummer, D. Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys. 8, 7055–7074 (2008).

    Article  Google Scholar 

  37. Sander, S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15. JPL Publication 06-2 (Jet Propulsion Laboratory, 2006).

    Google Scholar 

  38. IPCC Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2000).

    Google Scholar 

  39. Shindell, D. T. et al. Improved attribution of climate forcing to emissions. Science 326, 716–718 (2009).

    Article  Google Scholar 

  40. McLandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C. & Manney, G. L. Dynamical control of the mesosphere by orographic and non-orographic gravity wave drag during the extended northern winters of 2006 and 2009. J. Atmos. Sci. 70, 2152–2169 (2013).

    Article  Google Scholar 

  41. Weber, M. et al. Stratospheric Ozone, in ‘State of the Climate in 2011’. Bull. Am. Meteorol. Soc. 93, S46–S49 (2012).

    Google Scholar 

  42. World Meteorological Organization, Meteorology–A Three-Dimensional Science WMO Bull vol. 6 134–138 (WMO, 1957).

    Google Scholar 

  43. Remsberg, E. et al. On the quality of the Nimbus 7 LIMS version 6 ozone for studies of the middle atmosphere. J. Quant. Spectrosc. Rad. Transfer 105, 492–1031 (2007).

    Article  Google Scholar 

  44. Wang, H. J., Cunnold, D. M. & Bao, X. A critical analysis of stratospheric aerosol and gas experiment ozone trends. J. Geophys. Res. 101, 12495–12514 (1996).

    Article  Google Scholar 

  45. Wang, H. J., Cunnold, D. M., Thomason, L. W., Zawodny, J. M. & Bodeker, G. E. Assessment of SAGE version 6.1 ozone data quality. J. Geophys. Res. 107, 4691 (2002).

    Google Scholar 

  46. Von Clarmann, T. et al. Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements. Atmos. Meas. Technol. 2, 159–175 (2009).

    Article  Google Scholar 

  47. Remsberg, E. et al. On the inclusion of Limb Infrared Monitor of the Stratosphere version 6 ozone in a data assimilation system. J. Geophys. Res. 118, 7982–8000 (2013).

    Google Scholar 

  48. Stolarski, R. S. & Frith, S. M. Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: The importance of instrument drift uncertainty. Atmos. Chem. Phys. 6, 4057–4065 (2006).

    Article  Google Scholar 

  49. Fioletov, V. E. & Shepherd, T. G. Seasonal persistence of midlatitude total ozone anomalies. Geophys. Res. Lett. 30, 1417 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Canadian Space Agency through the CMAM20 project, with additional institutional support from the Canadian Centre for Climate Modelling and Analysis who provided the model code and supercomputing time.

Author information

Authors and Affiliations

Authors

Contributions

T.G.S. conceived the experiment, interpreted the results, and wrote the paper; D.A.P. performed the diagnostic analysis and devised the bias-correction procedure; J.F.S. devised and implemented the nudging procedure used to perform the experiments; M.I.H. performed the analysis of stratospheric partial column ozone and contributed to the writing; V.E.F. processed and provided the ground-based data and contributed to the interpretation; M.C.R. performed the simulations; and E.R., T.v.C. and H.J.W. processed and provided the LIMS, MIPAS and SAGE data, respectively.

Corresponding author

Correspondence to T. G. Shepherd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepherd, T., Plummer, D., Scinocca, J. et al. Reconciliation of halogen-induced ozone loss with the total-column ozone record. Nature Geosci 7, 443–449 (2014). https://doi.org/10.1038/ngeo2155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing