Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heat flux variations beneath central Greenland’s ice due to anomalously thin lithosphere

Subjects

Abstract

At the Earth’s surface, heat fluxes from the interior1 are generally insignificant compared with those from the Sun and atmosphere2, except in areas permanently blanketed by ice. Modelling studies show that geothermal heat flux influences the internal thermal structure of ice sheets and the distribution of basal melt water3, and it should be taken into account in planning deep ice drilling campaigns and climate reconstructions4. Here we use a coupled ice–lithosphere model driven by climate and show that the oldest and thickest part of the Greenland Ice Sheet is strongly influenced by heat flow from the deep Earth. We find that the geothermal heat flux in central Greenland increases from west to east due to thinning of the lithosphere, which is only about 25–66% as thick as is typical for terrains of early Proterozoic age5. Complex interactions between geothermal heat flow and glaciation-induced thermal perturbations in the upper crust over glacial cycles lead to strong regional variations in basal ice conditions, with areas of rapid basal melting adjoining areas of extremely cold basal ice. Our findings demonstrate the role that the structure of the solid Earth plays in the dynamics of surface processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study area and data sets suggesting anomalous thermal state of central Greenland lithosphere.
Figure 2: Modelled Curie depths versus thickness of thermal lithosphere derived from 1D simulations of ice–lithosphere evolution at the GRIP ice core location.
Figure 3: Influence of Greenland glaciation onset and GIS evolution on terrestrial heat flow in the upper crust.
Figure 4: Modelled present-day thermal states of lithosphere and basal ice in central Greenland.

Similar content being viewed by others

References

  1. Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).

    Article  Google Scholar 

  2. Kiehl, J. T. & Trenberth, K. E. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 78, 197–208 (1997).

    Article  Google Scholar 

  3. Pollard, D., DeConto, R. M. & Nyblade, A. A. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Glob. Planet. Change 49, 63–74 (2005).

    Article  Google Scholar 

  4. Dahl-Jensen, D. et al. Past temperatures directly from the Greenland Ice Sheet. Science 282, 268–271 (1998).

    Article  Google Scholar 

  5. Artemieva, I. M. & Mooney, W. D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. 106, 16387–16414 (2001).

    Article  Google Scholar 

  6. Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers (Butterworth-Heinemann, 2010).

    Google Scholar 

  7. Peters, L. E., Anandakrishnan, S., Alley, R. B. & Voigt, D. E. Seismic attenuation in glacial ice: A proxy for englacial temperature. J. Geophys. Res. 117, F02008 (2012).

    Google Scholar 

  8. Sass, J. H., Nielsen, B. L., Wollenberg, H. A. & Munroe, R. J. Heat flow and surface radioactivity at two sites in South Greenland. J. Geophys. Res. 77, 6435–6444 (1972).

    Article  Google Scholar 

  9. Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. & Gogineni, P. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–2342 (2001).

    Article  Google Scholar 

  10. Fox Maule, C., Purucker, M. E. & Olsen, N. Inferring Magnetic Crustal Thickness and Geothermal Heat Flux from Crustal Magnetic Field Models (Copenhagen, 2009); available at http://www.dmi.dk/dmi/dkc09-09.pdf.

    Google Scholar 

  11. Shapiro, N. M. & Ritzwoller, M. H. Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica. Earth Planet. Sci. Lett. 223, 213–224 (2004).

    Article  Google Scholar 

  12. Rogozhina, I. et al. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models. J. Geophys. Res. 117, F02025 (2012).

    Article  Google Scholar 

  13. Kumar, P. et al. The lithosphere–asthenosphere boundary in the North–West Atlantic region. Earth Planet. Sci. Lett. 236, 249–257 (2005).

    Article  Google Scholar 

  14. Jakovlev, A. V., Bushenkova, N. A., Koulakov, I. Y. & Dobretsov, N. L. Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography. Russ. Geol. Geophys. 53, 963–971 (2012).

    Article  Google Scholar 

  15. Dahl-Jensen, et al. Depth to Moho in Greenland: Receiver-function analysis suggests two Proterozoic blocks in Greenland. Earth Planet. Sci. Lett. 205, 379–393 (2003).

    Article  Google Scholar 

  16. Cuffey, K. M. Palaeoclimate: Into an ice age. Nature 431, 133–134 (2004).

    Article  Google Scholar 

  17. Rogozhina, I., Martinec, Z., Hagedoorn, J. M., Thomas, M. & Fleming, K. On the long-term memory of the Greenland Ice Sheet. J. Geophys. Res. 116, F01011 (2011).

    Article  Google Scholar 

  18. Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W. & Gundestrup, N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B 47, 624 (1995).

    Article  Google Scholar 

  19. Artemieva, I. M. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos 109, 23–46 (2009).

    Article  Google Scholar 

  20. Harper, J. et al. The Greenland Analogue Project report (Olkiluoto, 2012); available at http://www.posiva.fi/files/2826/WR_2012-16web.pdf.

    Google Scholar 

  21. Fox Maule, C., Purucker, M. E., Olsen, N. & Mosegaard, K. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464–467 (2005).

    Article  Google Scholar 

  22. Bamber, J. L., Layberry, R. L. & Gogineni, S. P. A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J. Geophys. Res. 106, 33773 (2001).

    Article  Google Scholar 

  23. Greve, R. A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. Lond. Ser. A 355, 921–974 (1997).

    Article  Google Scholar 

  24. Lawver, L. A. & Muller, R. D. Iceland hotspot track. Geology 22, 311–314 (1994).

    Article  Google Scholar 

  25. Legendre, C. P., Meier, T., Lebedev, S., Friederich, W. & Viereck-Götte, L. A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophys. J. Int. 191, 282–304 (2012).

    Article  Google Scholar 

  26. Brouwers, E. M., Jørgensen, N. O. & Cronin, T. M. Climatic significance of the ostracode fauna from the Pliocene Kap København Formation, north Greenland. Micropaleontology 37, 245–267 (1991).

    Article  Google Scholar 

  27. Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Article  Google Scholar 

  28. Clark, P. U. et al. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric CO2 . Quat. Sci. Rev. 25, 3150–3184 (2006).

    Article  Google Scholar 

  29. Petrunin, A. G., Meneses Rioseco, E., Sobolev, S. V. & Weber, M. Thermomechanical model reconciles contradictory geophysical observations at the Dead Sea Basin. Geochem. Geophys. Geosyst. 13, Q04011 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This study is a part of the multinational research initiative IceGeoHeat (I. Rogozhina, A. Petrunin, B. Steinberger, M. K. Kaban, I. Artemieva, J. V. Johnson, L. Tarasov, A. P. M. Vaughan, I. Kukkonen, I. Koulakov, W. Stolk, Z. Martinec, A. Shulgin and A. Tassara). The IceGeoHeat members are grateful to DynaQlim and COSC for financial support. Special thanks to C. Fox Maule for sharing the map of Curie depths with us.

Author information

Authors and Affiliations

Authors

Contributions

I.R. and A.P.M.V. wrote the manuscript. A.G.P. and I.R. designed the study and conducted all analyses. I.T.K. shared unpublished data derived from new boreholes in western Greenland. I.K. shared his P-wave tomography before its publication. All authors contributed to discussions and interpretations of the results.

Corresponding authors

Correspondence to A. G. Petrunin or I. Rogozhina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrunin, A., Rogozhina, I., Vaughan, A. et al. Heat flux variations beneath central Greenland’s ice due to anomalously thin lithosphere. Nature Geosci 6, 746–750 (2013). https://doi.org/10.1038/ngeo1898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing