Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles

Abstract

Glaciation during the late Palaeozoic era (340–250 Myr ago) is thought to have been episodic, with multiple, often regional, ice-age intervals, each lasting less than 10 million years. Sedimentary deposits from these ice-age intervals exhibit cyclical depositional patterns, which have been attributed to orbitally driven glacial–interglacial cycles and resultant fluctuations in global sea level. Here we use a coupled general-circulation/biome/ice-sheet model to assess the conditions necessary for glacial–interglacial fluctuations. In our simulations, ice sheets appear at atmospheric pCO2 concentrations between 420 and 840 ppmv. However, we are able to simulate ice-sheet fluctuations consistent with eustasy estimates and the distribution of glacial deposits only when we include vegetation feedbacks from high-latitude ecosystem changes. We find that ice-sheet advances follow the expansion of high-latitude tundra during insolation minima, whereas ice retreat is associated with the expansion of barren land close to the edge of the ice sheets during periods of high insolation. We are unable to simulate glacial–interglacial cycles in the absence of a dynamic vegetation component. We therefore suggest that vegetation feedbacks driven by orbital insolation variations are a crucial element of glacial–interglacial cyclicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time series of insolation, ice volume, sea level and terrestrial ecosystems.
Figure 2: Maximum simulated Southern Hemisphere ice extent in the 560-ppmv-pCO2 dynamic vegetation simulation at 175 kyr.
Figure 3: Climatic anomalies at the summer insolation minimum and maximum.
Figure 4: Time series of global ice volume and ecosystem coverage variability from 65° to 70° S.

Similar content being viewed by others

References

  1. Crowell, J. C. Gondwana glaciation, cyclothems, continental positioning, and climate change. Am. J. Sci. 278, 1345–1372 (1978).

    Article  Google Scholar 

  2. Veevers, J. J. & Powell, C. M. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geol. Soc. Am. Bull. 98, 475–487 (1987).

    Article  Google Scholar 

  3. Heckel, P. H. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America. Geology 14, 330–334 (1986).

    Article  Google Scholar 

  4. Wanless, H. R. & Shepard, F. P. Sea level and climatic changes related to late Paleozoic cycles. Geol. Soc. Am. Bull. 40, 17–50 (1936).

    Google Scholar 

  5. Crowley, T. J. & Baum, S. K. Modeling late Paleozoic glaciation. Geology 20, 507–510 (1992).

    Article  Google Scholar 

  6. Hyde, W. T., Crowley, T. J., Tarasov, L. & Peltier, W. R. The Pangean ice age: Studies with a coupled climate-ice sheet model. Clim. Dyn. 15, 619–629 (1999).

    Article  Google Scholar 

  7. Isbell, J. L., Miller, M. F., Wolfe, K. L. & Lenaker, P. A. in Extreme Depositional Environments: Mega End Members in Geologic Time: Timing of Late Paleozoic Glaciation in Gondwana: Was Glaciation Responsible for the Development of Northern Hemisphere Cyclothems? (eds Chan, M. A. & Archer, A. W.) (Geol. Soc. Am. Spec. Pap., Vol. 370, 2003).

    Google Scholar 

  8. Fielding, C. R., Frank, T. D. & Isbell, J. I. in Resolving the Late Paleozoic Ice Age in Time and Space: The Late Paleozoic Ice Age—a Review of Current Understanding and Synthesis of Global Climate Patterns (eds Fielding, C. R., Frank, T. D. & Isbell, J. I.) (Geol. Soc. Am. Spec. Pap., Vol. 441, 2008).

    Google Scholar 

  9. Ekart, D. D., Cerling, T. E., Montañez, I. P. & Tabor, N. J. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299, 805–827 (1999).

    Article  Google Scholar 

  10. Montañez, I. P. et al. CO2-forced climate and vegetation instability during the late Paleozoic deglaciation. Science 315, 8–91 (2007).

    Article  Google Scholar 

  11. Rygel, M. C., Fielding, C. R., Frank, T. D. & Birgenheier, L. P. The magnitude of late Paleozoic glacioeustatic fluctuations: A synthesis. J. Sedim. Res. 78, 500–511 (2008).

    Article  Google Scholar 

  12. Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009).

    Article  Google Scholar 

  13. Horton, D. E. & Poulsen, C. J. Paradox of late Paleozoic glacioeustasy. Geology 37, 715–718 (2009).

    Article  Google Scholar 

  14. Horton, D. E., Poulsen, C. J. & Pollard, D. Orbital and CO2 forcing of late Paleozoic ice sheets. Geophys. Res. Lett. 34, L19708 (2007).

    Article  Google Scholar 

  15. Ziegler, A. M., Hulver, M. L. & Rowley, D. B. in Late Glacial and Postglacial Environmental Changes-Quaternary, Carboniferous-Permian and Proterozoic: Permian World Topography and Climate (ed. Martini, I. P.) (Oxford Univ. Press, 1997).

    Google Scholar 

  16. Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  Google Scholar 

  17. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  18. Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophy. Res. 108, 8171–8187 (2003).

    Article  Google Scholar 

  19. Haxeltine, A. & Prentice, I. C. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10, 693–709 (1996).

    Article  Google Scholar 

  20. Harrison, S. P. & Prentice, C. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: Analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Change Biol. 9, 983–1004 (2003).

    Article  Google Scholar 

  21. DiMichele, W. A., Pfefferkorn, H. W. & Gastaldo, R. A. Response of late carboniferous and early Permian plant communities to climate change. Annu. Rev. Earth Planet. Sci. 29, 461–487 (2001).

    Article  Google Scholar 

  22. DiMichele, W. A., Montañez, I. P., Poulsen, C. J. & Tabor, N. J. Climate and vegetational regimes shifts in the late Paleozoic ice age earth. Geobiology 7, 200–226 (2009).

    Article  Google Scholar 

  23. Falcon-Lang, H. J. Pennsylvanian tropical rain forests responded to glacial–interglacial rhythms. Geology 32, 689–692 (2004).

    Article  Google Scholar 

  24. Falcon-Lang, H. J. et al. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands. Geology 37, 923–926 (2009).

    Article  Google Scholar 

  25. Retallack, G. J. Carboniferous fossil plants and soils of an early tundra ecosystem. Palaios 14, 324–336 (1999).

    Article  Google Scholar 

  26. Strömberg, C. A. E. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proc. Natl Acad..Sci. 102, 11980–11984 (2005).

    Article  Google Scholar 

  27. Poulsen, C. J., Pollard, D., Montañez, I. P. & Rowley, D. Late Paleozoic tropical climate response to Gondwanan deglaciation. Geology 35, 771–774 (2007).

    Article  Google Scholar 

  28. Fluteau, F., Besse, J., Broutin, J. & Ramstein, G. The late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeogr. Palaeoclimatol. Palaeoecol. 167, 39–71 (2001).

    Article  Google Scholar 

  29. Eyles, N., Mory, A. J. & Backhouse, J. Carboniferous-Permian palynostratigraphy of west Australian marine rift basins: Resolving tectonic and eustatic controls during Gondwanan glaciations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 305–319 (2002).

    Article  Google Scholar 

  30. Stott, L., Timmermann, A. & Thunell, R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 318, 435–438 (2007).

    Article  Google Scholar 

  31. Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the last glacial maximum. Clim. Past 1, 1–7 (2005).

    Article  Google Scholar 

  32. Lee, S. & Poulsen, C. J. Tropical Pacific climate response to obliquity forcing in the Pleistocene. Paleoceanography 20, PA4010 (2005).

    Article  Google Scholar 

  33. Bar-Or, R., Erlick, C. & Gildor, H. The role of dust in glacial–interglacial cycles. Quat. Sci. Rev. 27, 201–208 (2008).

    Article  Google Scholar 

  34. Gallimore, R. G. & Kutzbach, J. E. Role of orbitally induced changes in tundra area on the onset of glaciation. Nature 381, 503–505 (1996).

    Article  Google Scholar 

  35. Crucifix, M. & Hewitt, C. D. Impacts of vegetation changes on the dynamics of the atmosphere at the last glacial maximum. Clim. Dyn. 25, 447–459 (2005).

    Article  Google Scholar 

  36. Meissner, K. J., Weaver, A. J., Matthews, H. D. & Cox, P. M. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Clim. Dyn. 21, 515–537 (2003).

    Article  Google Scholar 

  37. Kubatzki, C., Clauusen, M., Calov, R. & Ganopolski, A. Sensitivity of the last glacial inception to initial and surface conditions. Clim. Dyn. 27, 333–344 (2006).

    Article  Google Scholar 

  38. Claussen, M., Fohlmeister, J., Ganopolski, A. & Brovkin, V. Vegetation dynamics amplifies precessional forcing. Geophys. Res. Lett. 33, L09709 (2006).

    Article  Google Scholar 

  39. Charbit, S., Ritz, C., Philippon, G., Peyaund, V. & Kageyama, M. Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial–interglacial cycle. Clim. Past 3, 15–37 (2007).

    Article  Google Scholar 

  40. Thompson, S. L. & Pollard, D. Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from GENESIS version-2 global climate model. J. Clim. 10, 871–900 (1997).

    Article  Google Scholar 

  41. Pollard, D. & Thompson, S. L. Use of a land-surface-transfer scheme (LSX) in a global climate model: The response to doubling stomatal resistance. Glob. Planet. Change 10, 129–161 (1995).

    Article  Google Scholar 

  42. Deconto, R. M. & Pollard, D. A coupled climate-ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 39–52 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This manuscript benefited from comments by T. Torsvik and the members of the University of Michigan Palaeoclimate Simulation Lab. In addition, we thank W. DiMichelle and I. Montañez for conversations motivating this work. D.E.H. and C.J.P. were supported by NSF grant SGPP-0544760.

Author information

Authors and Affiliations

Authors

Contributions

D.E.H. and C.J.P. designed the experiments, interpreted the results and co-wrote the manuscript. D.P. provided and/or coupled the model components and interpreted the results.

Corresponding author

Correspondence to Daniel E. Horton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, D., Poulsen, C. & Pollard, D. Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles. Nature Geosci 3, 572–577 (2010). https://doi.org/10.1038/ngeo922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing