Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

Abstract

Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tree cover increase with CO2 increase over the past century near Queenstown, Eastern Cape, South Africa.

Similar content being viewed by others

References

  1. Niang, I. et al. in IPCC Climate Change 2014: Impacts, Adaptation and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) 1199–1265 (Cambridge Univ. Press, 2014).

    Google Scholar 

  2. Woodward, F. I. & Kelly, C. K. Responses of global plant diversity capacity to changes in carbon dioxide concentration and climate. Ecol. Lett. 11, 1229–1237 (2008).

    Article  CAS  Google Scholar 

  3. Midgley, G. F. & Thuiller, W. Potential responses of terrestrial biodiversity in Southern Africa to anthropogenic climate change. Reg. Environ. Change 11, 127–135 (2010).

    Article  Google Scholar 

  4. Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5, e157 (2007).

    Article  CAS  Google Scholar 

  5. Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. http://dx.doi.org/10.1111/conl.12159 (2015).

  6. Fischlin, A. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  7. Jones, A. G., Scullion, J., Ostle, N., Levy, P. E. & Gwynn-Jones, D. Completing the FACE of elevated CO2 research. Environ. Int. 73, 252–258 (2014).

    Article  CAS  Google Scholar 

  8. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science. 300, 1560–1563 (2003).

    Article  CAS  Google Scholar 

  9. Bond, W. J. Large parts of the world are brown or black: a different view on the 'Green World' hypothesis. J. Veg. Sci. 16, 261–266 (2005).

    Google Scholar 

  10. Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–13 (2014).

    Article  Google Scholar 

  11. Bond, W. J. & Parr, C. L. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404 (2010).

    Article  Google Scholar 

  12. Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New Phytol. 201, 908–15 (2014).

    Article  CAS  Google Scholar 

  13. Osborne, C. P. Atmosphere, ecology and evolution: What drove the Miocene expansion of C4 grasslands? J. Ecol. 96, 35–45 (2008).

    Google Scholar 

  14. Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).

    Article  CAS  Google Scholar 

  15. Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    Article  CAS  Google Scholar 

  16. Keeley, J. E. & Rundel, P. W. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8, 683–690 (2005).

    Article  Google Scholar 

  17. Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).

    Article  Google Scholar 

  18. Archibald, S., Lehmann, C. E. R., Gómez-dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Article  CAS  Google Scholar 

  19. Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  CAS  Google Scholar 

  20. Van der Made, J. Late Pleistocene European and Late Miocene African accelerations of faunal change in relation to the climate and as a background to human evolution. Quat. Int. 326–327, 431–447 (2014).

    Article  Google Scholar 

  21. Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).

    Google Scholar 

  22. Maurin, O. et al. Savanna fire and the origins of the 'underground forests' of Africa. New Phytol. 204, 201–214 (2014).

    Article  Google Scholar 

  23. Staver, A. C., Bond, W. J., Cramer, M. D. & Wakeling, J. L. Top-down determinants of niche structure and adaptation among African Acacias. Ecol. Lett. 15, 673–679 (2012).

    Article  Google Scholar 

  24. Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B 367, 601–612 (2012).

    Article  CAS  Google Scholar 

  25. Sirami, C., Seymour, C., Midgley, G. & Barnard, P. The impact of shrub encroachment on savanna bird diversity from local to regional scale. Divers. Distrib. 15, 948–957 (2009).

    Article  Google Scholar 

  26. Rutherford, M. C., Powrie, L. W. & Husted, L. B. Plant diversity consequences of a herbivore-driven biome switch from Grassland to Nama-Karoo shrub steppe in South Africa. Appl. Veg. Sci. 15, 14–25 (2012).

    Article  Google Scholar 

  27. Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).

    Article  Google Scholar 

  28. Staver, A C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–2 (2011).

    Article  CAS  Google Scholar 

  29. Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. New Phytol. 195, 653–666 (2012).

    Article  Google Scholar 

  30. Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).

    Article  Google Scholar 

  31. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1–36 (Cambridge Univ. Press, 2013).

  32. Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nature 4, 418–420 (2011).

    CAS  Google Scholar 

  33. Bergengren, J. C., Waliser, D. E. & Yung, Y. L. Ecological sensitivity: a biospheric view of climate change. Climatic Change 107, 433–457 (2011).

    Article  CAS  Google Scholar 

  34. Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. Lond. B. 359, 1465–1476 (2004).

    Article  CAS  Google Scholar 

  35. Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).

    Article  CAS  Google Scholar 

  36. Scheiter, S. & Higgins, S. I. Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Glob. Change Biol. 15, 2224–2246 (2009).

    Article  Google Scholar 

  37. Kissling, W. D., Field, R., Korntheuer, H., Heyder, U. & Böhning-Gaese, K. Woody plants and the prediction of climate-change impacts on bird diversity. Philos. Trans. R. Soc. B. 365, 2035–2045 (2010).

    Article  CAS  Google Scholar 

  38. Dlamini, W. M. Bioclimatic modeling of Southern African bioregions and biomes using bayesian networks. Ecosystems 14, 366–381 (2011).

    Article  Google Scholar 

  39. Heubes, J. et al. Modelling biome shifts and tree cover change for 2050 in West Africa. J. Biogeogr. 38, 2248–2258 (2011).

    Article  Google Scholar 

  40. Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa. Proc. Natl Acad. Sci. USA 109, 847–52 (2012).

    Article  CAS  Google Scholar 

  41. Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–7 (2008).

    Article  CAS  Google Scholar 

  42. Thuiller, W. BIOMOD: optimising predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).

    Article  Google Scholar 

  43. McClean, C. J. et al. African plant diversity and climate change. Ann. Missouri Bot. Gard. 92, 139–152 (2005).

    Google Scholar 

  44. Thuiller, W. et al. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424–440 (2006).

    Article  Google Scholar 

  45. Braswell, B. H., Schimel, D. S., Linder, E. & Moore, B. III The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870–872 (1997).

    Article  CAS  Google Scholar 

  46. Hannah, L., Midgley, G. F. & Millar, D. Climate change-integrated conservation strategies. Glob. Ecol. Biogeogr. 11, 485–495 (2002).

    Article  Google Scholar 

  47. Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    Article  CAS  Google Scholar 

  48. Ramberg, L. et al. Species diversity of the Okavango Delta, Botswana. Aquat. Sci. 68, 310–337 (2006).

    Article  Google Scholar 

  49. Milzow, C., Burg, V. & Kinzelbach, W. Estimating future ecoregion distributions within the Okavango Delta Wetlands based on hydrological simulations and future climate and development scenarios. J. Hydrol. 381, 89–100 (2010).

    Article  Google Scholar 

  50. Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).

    Article  Google Scholar 

  51. Boitani, L. et al. Distribution of medium- to large-sized African mammals based on habitat suitability models. Biodivers. Conserv. 17, 605–621 (2008).

    Article  Google Scholar 

  52. Botts, E. A., Erasmus, B. F. N. & Alexander, G. J. Geographic sampling bias in the South African Frog Atlas Project: implications for conservation planning. Biodivers. Conserv. 20, 119–139 (2011).

    Article  Google Scholar 

  53. Linder, H. P. et al. The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205 (2012).

    Article  Google Scholar 

  54. Fjeldsaå, J. & Lovett, J. C. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 6, 325–346 (1997).

    Article  Google Scholar 

  55. Poulter, B. et al. Plant functional type mapping for earth system models. Geosci. Model Dev. 4, 993–1010 (2011).

    Article  Google Scholar 

  56. Maignan, F. et al. Evaluation of a global vegetation model using time series of satellite vegetation indices. Geosci. Model Dev. 4, 1103–1114 (2011).

    Article  Google Scholar 

  57. Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–537 (2005).

    Article  CAS  Google Scholar 

  58. Greve, M., Lykke, A. M., Blach-Overgaard, A. & Svenning, J-C. C. Environmental and anthropogenic determinants of vegetation distribution across Africa. Glob. Ecol. Biogeogr. 20, 661–674 (2011).

    Article  Google Scholar 

  59. Ratnam, J. et al. When is a 'forest' a savanna, and why does it matter? Glob. Ecol. Biogeogr. 20, 653–660 (2011).

    Article  Google Scholar 

  60. Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–9 (2005).

    Article  CAS  Google Scholar 

  61. Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Change Biol. 9, 973–982 (2003).

    Article  Google Scholar 

  62. Harrison, S. P. & Prentice, C. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Change Biol. 9, 983–1004 (2003).

    Article  Google Scholar 

  63. Staver, C. et al. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).

    Article  Google Scholar 

  64. O'Connor, T. G., Puttick, J. R. & Hoffman, M. T. Bush encroachment in southern Africa: changes and causes. African J. Range Forage Sci. 31, 67–88 (2014).

    Article  Google Scholar 

  65. Higgins, S. I., Bond, W. J. & Trollope, W. S. W. Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J. Ecol. 88, 213–229 (2000).

    Article  Google Scholar 

  66. Roques, K. G., O'Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).

    Article  Google Scholar 

  67. Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: Local vs. global drivers? Glob. Change Biol. 16, 964–976 (2010).

    Article  Google Scholar 

  68. Buitenwerf, R., Bond, W. J., Stevens, N. & Trollope, W. S. W. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob. Change Biol. 18, 675–684 (2012).

    Article  Google Scholar 

  69. Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol. 35, 451–463 (2010).

    Article  Google Scholar 

  70. Delire, C., Ngomanda, A. & Jolly, D. Possible impacts of 21st century climate on vegetation in Central and West Africa. Glob. Planet. Change 64, 3–15 (2008).

    Article  Google Scholar 

  71. Scheiter, S. & Higgins, S. I. Impacts of climate change on the vegetation of South Africa: an adaptive dynamic vegetation modeling approach. Glob. Change Biol. 15, 2224–2246 (2009).

    Article  Google Scholar 

  72. Wakeling, J. L., Cramer, M. D. & Bond, W. J. Is the lack of leguminous savanna trees in grasslands of South Africa related to nutritional constraints? Plant Soil 336, 173–182 (2010).

    Article  CAS  Google Scholar 

  73. Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, 1–15 (2007).

    Article  CAS  Google Scholar 

  74. Hoffmann, W. A., Bazzaz, F. A., Chatterton, N. J., Harrison, P. A. & Jackson, R. B. Elevated CO2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317 (2000).

    Article  CAS  Google Scholar 

  75. Scholes, R. J. & Walker, B. H. An African Savanna: Synthesis of the Nylsvley Study (Cambridge Univ. Press, 2004).

    Google Scholar 

  76. Wakeling, J. L., Cramer, M. D. & Bond, W. J. The savanna-grassland 'treeline': Why don't savanna trees occur in upland grasslands? J. Ecol. 100, 381–391 (2012).

    Article  Google Scholar 

  77. Stevens, N., Swemmer, A. M., Ezzy, L. & Erasmus, B. F. N. Investigating potential determinants of the distribution limits of a savanna woody plant: Colophospermum mopane. J. Veg. Sci. 25, 363–373 (2014).

    Article  Google Scholar 

  78. Burke, A. Savanna trees in Namibia — factors controlling their distribution at the arid end of the spectrum. Flora Morphol. Distrib. Funct. Ecol. Plants 201, 189–201 (2006).

    Article  Google Scholar 

  79. Cowling, R. M. Phytochorology and vegetation history in the south-eastern Cape, South Africa. J. Biogeogr. 10, 393–419 (1983).

    Article  Google Scholar 

  80. Van Wilgen, B. W., Higgins, K. B. & Bellstedp, D. U. The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire-prone fynbos shrublands of South Africa. J. Ecol. 78, 210–222 (1990).

    Article  Google Scholar 

  81. Manders, P. T. & Richardson, D. M. Colonization of Cape fynbos communities by forest species. Forest Ecol. Manage. 48, 277–293 (1992).

    Article  Google Scholar 

  82. Schnitzler, J., Graham, C. H., Dormann, C. F., Schiffers, K. & Peter Linder, H. Climatic niche evolution and species diversification in the cape flora, South Africa. J. Biogeogr. 39, 2201–2211 (2012).

    Article  Google Scholar 

  83. Bond, W. J., Midgley, G. F. & Woodward, F. I. What controls South African vegetation — climate or fire? South African J. Bot. 69, 79–91 (2003).

    Article  Google Scholar 

  84. Midgley, G. F., Reeves, G., Klak, C. & Richardson, J. in Phylogeny and Conservation (eds Purvis, A. et al.) 230–242 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  85. Wilson, A. M. et al. A Hierarchical Bayesian model of wildfire in a Mediterranean biodiversity hotspot: implications of weather variability and global circulation. Ecol. Model. 221, 106–112 (2010).

    Article  Google Scholar 

  86. Hannah, L., Midgley, G. F., Hughes, G. & Bomhard, B. The view from the Cape: extinction risk, protected areas and climate change. Bioscience 55, 231–242 (2005).

    Article  Google Scholar 

  87. Altwegg, R., Klerk, D. H. M. & Midgley, G. F. Fire-mediated disruptive selection can explain the reseeder–resprouter dichotomy in Mediterranean-type vegetation. Oecologia 4, 367–377 (2014).

    Google Scholar 

  88. Mustart, P., Juritz, J., Makua, C., Van der Merwe, S. W. & Wessels, N. Restoration of the Clanwilliam cedar Widdringtonia cedarbergensis: the importance of monitoring seedlings planted in the Cederberg, South Africa. Biol. Conserv. 72, 73–76 (1995).

    Article  Google Scholar 

  89. Midgley, G. F., Stock, W. D. & Juritz, J. M. Effects of elevated CO2 on Cape fynbos species adapted to soils of different nutrient status: nutrient and CO2-responsiveness. J. Biogeogr. 22, 185–191 (1995).

    Article  Google Scholar 

  90. Zizka, A., Govender, N. & Higgins, S. I. How to tell a shrub from a tree: a life-history perspective from a South African savanna. Austral Ecol. 39, 767–778 (2014).

    Article  Google Scholar 

  91. Huntley, B., Midgley, G. F., Barnard, P. & Valdes, P. J. Suborbital climatic variability and centres of biological diversity in the Cape region of southern Africa. J. Biogeogr. 41, 1338–1351 (2014).

    Article  Google Scholar 

  92. Pickford, M. et al. Eocene aridity in southwestern Africa: timing of onset and biological consequences. Trans. R. Soc. South Africa 69, 139–144 (2014).

    Article  Google Scholar 

  93. Stokes, S., Thomas, D. S. G. & Washington, R. Multiple episodes of aridity in southern Africa since the last interglacial period. Nature 388, 154–158 (1997).

    Article  CAS  Google Scholar 

  94. Jacobson, N., Jacobson, P., van Jaarsveld, E. & Jacobson, K. Field evidence from Namibia does not support the designation of Angolan and Namibian subspecies of Welwitschia mirabilis Hook. Trans. R. Soc. South Africa 69, 179–186 (2014).

    Article  Google Scholar 

  95. Klak, C., Reeves, G. & Hedderson, T. A. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427, 63–65 (2004).

    Article  CAS  Google Scholar 

  96. Spriggs, E. L., Christin, P. A. & Edwards, E. J. C4 photosynthesis promoted species diversification during the miocene grassland expansion. PLoS ONE 9, e9772 (2014).

    Article  CAS  Google Scholar 

  97. Skinner, J. Springbok (Antidorcas marsupialis) treks. Trans. R. Soc. South Africa 48, 291–305 (1993).

    Article  Google Scholar 

  98. Raupach, M. R. Carbon cycle: pinning down the land carbon sink. Nature Clim. Change 1, 148–149 (2011).

    Article  CAS  Google Scholar 

  99. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  CAS  Google Scholar 

  100. Bastos, A., Running, S. W., Gouveia, C. & Trigo, R. M. The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. J. Geophys. Res. Biogeosci. 118, 1247–1255 (2013).

    Article  Google Scholar 

  101. Thomas, D. S. G., Knight, M. & Wiggs, G. F. Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435, 1218–1221 (2005).

    Article  CAS  Google Scholar 

  102. Eamus, D. & Palmer, A. R. Is climate change a possible explanation for woody thickening in arid and semi-arid regions? Res. Lett. Ecol. 2007, 1–5 (2007).

    Article  Google Scholar 

  103. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  CAS  Google Scholar 

  104. Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance — hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).

    Article  CAS  Google Scholar 

  105. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  106. Masubelele, M. L., Hoffman, M. T., Bond, W. & Burdett, P. Vegetation change (1988–2010) in Camdeboo National Park (South Africa), using fixed-point photo monitoring: the role of herbivory and climate. Koedoe 55, 1–16 (2013).

    Google Scholar 

  107. Masubelele, M. L., Hoffman, M. T., Bond, W. J. & Gambiza, J. A 50 year study shows grass cover has increased in shrublands of semi-arid South Africa. J. Arid Environ. 104, 43–51 (2014).

    Article  Google Scholar 

  108. Bond, W. J., Stock, W. D. & Hoffman, M. T. Has the Karoo spread? A test for desertification using carbon isotopes from soils. S. Afr. J. Sci. 90, 391–397 (1994).

    CAS  Google Scholar 

  109. Du Toit, J. C., van den Berg, L. & O'Connor, T. G. Fire effects on vegetation in a grassy dwarf shrubland at a site in the eastern Karoo, South Africa. Afr. J. Range For. Sci. 32, 13–20 (2014).

    Article  Google Scholar 

  110. Midgley, G. F. & Thuiller, W. Potential vulnerability of Namaqualand plant diversity to anthropogenic climate change. J. Arid Environ. 70, 615–628 (2007).

    Article  Google Scholar 

  111. Thuiller, W. et al. Endemic species and ecosystem sensitivity to climate change in Namibia. Glob. Change Biol. 12, 759–776 (2006).

    Article  Google Scholar 

  112. Foden, W. et al. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Divers. Distrib. 13, 645–653 (2007).

    Article  Google Scholar 

  113. Canadell, J. G., Raupach, M. R. & Houghton, R. A. Anthropogenic CO2 emissions in Africa. Biogeosciences 6, 463–468 (2009).

    Article  CAS  Google Scholar 

  114. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agr. Ecosyst. Environ. 126, 67–80 (2008).

    Article  Google Scholar 

  115. Anonymous Namibia Second National Communication to the UNFCCC (Ministry of Environment and Tourism, Directorate of Environmental Affairs, Republic of Namibia, 2011); http://unfccc.int/resource/docs/natc/namnc2.pdf

  116. Archibald, S., Staver, A. C. & Levin, S. A. Evolution of human-driven fire regimes in Africa. Proc. Natl Acad. Sci. USA 109, 847–852 (2012).

    Article  CAS  Google Scholar 

  117. Gregoire, J-M. et al. Effect of land-cover change on Africa. Int. J. Wildland Fire 22, 107–120 (2012).

    Article  Google Scholar 

  118. Savory, A. & Lambrechts, J. Holism: the future of range science to meet global challenges. Grassl. Soc. South. Africa 12, 28–47 (2012).

    Google Scholar 

  119. Wintle, B. A. et al. Ecological–economic optimization of biodiversity conservation under climate change. Nature Clim. Change 1, 355–359 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Funding via the South African National Research Foundation 'Global Change Grand Challenge: Solutions for Sustainability' Grant 92463 (G.F.M.) and the NRF/CSIR Applied Center for Climate and Earth System Studies (W.J.B.) made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy F. Midgley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midgley, G., Bond, W. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Clim Change 5, 823–829 (2015). https://doi.org/10.1038/nclimate2753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2753

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology