Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

What counters antibiotic resistance in nature?

Antibiotics promote the spread of resistance in the clinic, but various mechanisms may exist in natural environments that tilt the balance toward antibiotic sensitivity. Studying such mechanisms could help us understand the evolutionary dynamics of resistance and sensitivity in the wild, which may inspire new therapeutic strategies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dynamics of antibiotic resistance in clinical settings may profoundly differ from that in the natural environment (schematic illustration).
Figure 2: Synergistic and suppressive antibiotic combinations respectively enhance and invert selection for resistance to their components.
Figure 3: The degradation products of antibiotics can select against resistance.
Figure 4: Differential inhibition assay identifies products of soil microbes that exert selection for or against tetracycline resistance.

References

  1. Taubes, G. Science 321, 356–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Levy, S.B. & Marshall, B. Nat. Med. 10, S122–S129 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. D'Costa, V.M. et al. Nature 477, 457–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Clardy, J., Fischbach, M.A. & Currie, C.R. Curr. Biol. 19, R437–R441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hopwood, D.A. Streptomyces in Nature and Medicine: The Antibiotic Makers (Oxford University Press, 2007).

    Google Scholar 

  6. Allen, H.K. et al. Nat. Rev. Microbiol. 8, 251–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, G.D. Curr. Opin. Microbiol. 13, 589–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Chait, R., Craney, A. & Kishony, R. Nature 446, 668–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Cell 139, 707–718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeh, P., Tschumi, A.I. & Kishony, R. Nat. Genet. 38, 489–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bannister, D. J. Gen. Microbiol. 61, 273–281 (1970).

    Article  CAS  Google Scholar 

  12. Craine, B.L. J. Bacteriol. 151, 487–490 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reading, C. & Cole, M. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szybalski, W. & Bryson, V. J. Bacteriol. 64, 489–499 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bochner, B.R., Huang, H.C., Schieven, G.L. & Ames, B.N. J. Bacteriol. 143, 926–933 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chait, R., Shrestha, S., Shah, A.K., Michel, J.-B. & Kishony, R. PLoS ONE 5, e15179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bacon, C.W., Porter, J.K., Norred, W.P. & Leslie, J.F. Appl. Environ. Microbiol. 62, 4039–4043 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmer, A.C., Angelino, E. & Kishony, R. Nat. Chem. Biol. 6, 105–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerr, B., Riley, M.A., Feldman, M.W. & Bohannan, B.J.M. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Vetsigian, K., Jajoo, R. & Kishony, R. PLoS Biol. 9, e1001184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kroiss, J. et al. Nat. Chem. Biol. 6, 261–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, Y., Wei, X., Ebright, R. & Wall, D. J. Bacteriol. 193, 4626–4633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shank, E.A. & Kolter, R. Curr. Opin. Microbiol. 12, 205–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hibbing, M.E., Fuqua, C., Parsek, M.R. & Peterson, S.B. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linares, J.F., Gustafsson, I., Baquero, F. & Martinez, J.L. Proc. Natl. Acad. Sci. USA 103, 19484–19489 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Kishony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chait, R., Vetsigian, K. & Kishony, R. What counters antibiotic resistance in nature?. Nat Chem Biol 8, 2–5 (2012). https://doi.org/10.1038/nchembio.745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.745

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research