Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis

Abstract

The detection of tuberculosis currently relies upon insensitive and unspecific techniques; newer diagnostics would ideally co-opt specific bacterial processes to provide real-time readouts. The trehalose mycolyltransesterase enzymes (antigens 85A, 85B and 85C (Ag85A, Ag85B, Ag85C)) serve as essential mediators of cell envelope function and biogenesis in Mycobacterium tuberculosis. Through the construction of a systematically varied sugar library, we show here that Ag85 enzymes have exceptionally broad substrate specificity. This allowed exogenously added synthetic probes to be specifically incorporated into M. tuberculosis growing in vitro and within macrophages. Even bulky substituents, such as a fluorescein-containing trehalose probe (FITC-trehalose), were incorporated by growing bacilli, thereby producing fluorescent bacteria; microscopy revealed selective labeling of poles and membrane. Addition of FITC-trehalose to M. tuberculosis–infected macrophages allowed selective, sensitive detection of M. tuberculosis within infected mammalian macrophages. These studies suggest that analogs of trehalose may prove useful as probes of function and for other imaging modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ag85 structure and enzyme activity.
Figure 2: Trehalose is incorporated into M. tuberculosis in vitro and in macrophages.
Figure 3: Trehalose library.
Figure 4: Labeling of individual bacilli in vitro and within infected macrophages.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. World Health Organization. Global Tuberculosis Control Report 2008 (2008).

  2. Young, D.B. Confronting the scientific obstacles to global control of tuberculosis. J. Clin. Invest. 118, 1255–1265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daffé, M. & Etienne, G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 79, 153–169 (1999).

    Article  PubMed  Google Scholar 

  4. Murphy, H.N. et al. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 280, 14524–14529 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Woodruff, P.J. et al. Trehalose is required for growth of Mycobacterium smegmatis. J. Biol. Chem. 279, 28835–28843 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J.M. & Engelhard, H. Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. USA 105, 3963–3967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamagami, H. et al. Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body- and hypersensitivity-type granulomas in mice. Infect. Immun. 69, 810–815 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barry, C.E. & Mdluli, K. Drug sensitivity and environmental adaptation of mycobacterial cell wall components. Trends Microbiol. 4, 275–281 (1996).

    Article  PubMed  Google Scholar 

  9. Kilburn, J.O., Takayama, K.K. & Armstrong, E.E.L. Synthesis of trehalose dimycolate (cord factor) by a cell-free system of Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 108, 132–139 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Fukui, Y., Hirai, T., Uchida, T. & Yoneda, M. Extracellular proteins of tubercle bacilli. IV. Alpha and beta antigens as major extracellular protein products and as cellular components of a strain (H37Rv) of Mycobacterium tuberculosis. Biken J. 8, 189–199 (1965).

    CAS  PubMed  Google Scholar 

  11. Jackson, M. et al. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol. Microbiol. 31, 1573–1587 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Puech, V., Bayan, N., Salim, K., Leblon, G. & Daffe, M. Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol. Microbiol. 35, 1026–1041 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ronning, D.R. et al. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat. Struct. Biol. 7, 141–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, D.H., Harth, G., Horwitz, M.A. & Eisenberg, D. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase. J. Mol. Biol. 307, 671–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ronning, D.R., Vissa, V., Besra, G.S., Belisle, J.T. & Sacchettini, J.C. Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity. J. Biol. Chem. 279, 36771–36777 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Belisle, J.T. et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276, 1420–1422 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Titgemeyer, F. et al. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 189, 5903–5915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalscheuer, R., Weinricka, B., Veeraraghavan, U., Besra, G.S. & Jacobs, W.R. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA (2010).

  19. Slayden, R.A. & Barry, C.E. The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect. 2, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Tufariello, J.M., Chan, J. & Flynn, J.L. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect. Dis. 3, 578–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Demchenko, A.V. 1,2-cis O-Glycosylation: methods, strategies, principles. Curr. Org. Chem. 7, 35–79 (2003).

    Article  CAS  Google Scholar 

  22. Pratt, M.R., Leigh, C.D. & Bertozzi, C.R. Formation of 1,1-alpha,alpha-glycosidic bonds by intramolecular aglycone delivery. A convergent synthesis of trehalose. Org. Lett. 5, 3185–3188 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Gobec, S. et al. Design, synthesis, biochemical evaluation and antimycobacterial action of phosphonate inhibitors of antigen 85C, a crucial enzyme involved in biosynthesis of the mycobacterial cell wall. Eur. J. Med. 42, 54–63 (2007).

    Article  CAS  Google Scholar 

  24. Hui, Y. & Chang, C.W. Convenient divergent synthesis of a library of trehalosamine analogues. Org. Lett. 4, 2245–2248 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hadfield, A.F., Hough, L. & Richardson, A.C. The syntheses of 4,6-dideoxy-4,6-difluoro- and 4-deoxy-4-fluoro-alpha,alpha-trehalose. Carbohydr. Res. 71, 95–102 (1979).

    Article  CAS  Google Scholar 

  26. Namme, R., Hideyo, T.M. & Ikegami, T.S. Development of ketoside-type analogues of trehalose by using stereoselective O-glycosidation of ketose. Eur. J. Org. Chem. 2007, 3758–3764 (2007).

    Article  Google Scholar 

  27. Li, X., Ohtake, H., Takahashi, H. & Ikegami, S. A facile synthesis of 1′-C-alkyl-α-disaccharides from 1-C-alkyl-hexopyranoses and methyl 1-C-methyl-hexopyranosides. Tetrahedron 57, 4297–4309 (2001).

    Article  CAS  Google Scholar 

  28. Rodríguez, M.A. et al. Synthesis of 2-iodoglycals, glycals, and 1,1′-disaccharides from 2-deoxy-2-iodopyranoses under dehydrative glycosylation conditions. J. Org. Chem. 72, 8998–9001 (2007).

    Article  PubMed  Google Scholar 

  29. Giaever, H.M., Styrvold, O.B., Kaasen, I. & Strom, A.R. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, 2841–2849 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, M. et al. Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency. J. Am. Chem. Soc. 127, 9336–9337 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Converse, S.E. et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA 100, 6121–6126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hatzios, S.K. et al. PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 284, 12745–12751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843–1850 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Spargo, B.J., Crowe, L.M., Ioneda, T., Beaman, B.L. & Crowe, J.H. Cord factor (alpha,alpha-trehalose 6,6′-dimycolate) inhibits fusion between phospholipid vesicles. Proc. Natl. Acad. Sci. USA 88, 737–740 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Indrigo, J., Hunter, R.L. Jr. & Actor, J.K. Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149, 2049–2059 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Fratti, R.A., Backer, J.M., Gruenberg, J., Corvera, S. & Deretic, V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154, 631–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kyei, G.B. et al. Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J. 25, 5250–5259 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ullrich, H.J., Beatty, W.L. & Russell, D.G. Direct delivery of procathepsin D to phagosomes: implications for phagosome biogenesis and parasitism by Mycobacterium. Eur. J. Cell Biol. 78, 739–748 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Matsunaga, I. et al. Mycolyltransferase-mediated glycolipid exchange in mycobacteria. J. Biol. Chem. 283, 28835–28841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beatty, W.L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Thanky, N.R., Young, D.B. & Robertson, B.D. Unusual features of the cell cycle in mycobacteria: polar-restricted growth and the snapping-model of cell division. Tuberculosis (Edinb.) 87, 231–236 (2007).

    Article  CAS  Google Scholar 

  43. Provvedi, R., Boldrin, F., Falciani, F., Palu, G. & Manganelli, R. Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology-Sgm 155, 1093–1102 (2009).

    Article  CAS  Google Scholar 

  44. Glatman-Freedman, A., Martin, J.M., Riska, P.F., Bloom, B.R. & Casadevall, A. Monoclonal antibodies to surface antigens of Mycobacterium tuberculosis and their use in a modified enzyme-linked immunosorbent spot assay for detection of mycobacteria. J. Clin. Microbiol. 34, 2795–2802 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Schorey, J.S., Carroll, M.C. & Brown, E.J. A macrophage invasion mechanism of pathogenic mycobacteria. Science 277, 1091–1093 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Weingart, C.L. et al. Fluorescent labels influence phagocytosis of Bordetella pertussis by human neutrophils. Infect. Immun. 67, 4264–4267 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson, D.H. et al. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase. J. Mol. Biol. 307, 671–681 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Claridge, B. Odell and T. Jackson for assistance with NMR spectra and C. Sparrow, J. McCullagh and R. Procter for their assistance with mass spectrometry. O. Schwartz, L. Koo, M. Gastinger, S. Becker and J. Kabat provided tremendous assistance on all imaging of M. tuberculosis. We thank the Colorado State “Tuberculosis Vaccine Testing and Research Materials” Contract (Colorado State University, Fort Collins) and G.J. Davies (University of York) for providing Ag85 and OtsA plasmids, respectively. We thank A. Sher (US National Institute of Allergy and Infectious Disease, US National Institutes of Health) for M. bovis BCG expressing DSRed1 and T. Oh (Yonsei University) for H37Rv carrying the mCherry-PMV261 plasmid. This study was supported (in part) by the Intramural Research Program of the US National Institutes of Health, the US National Institute of Allergy and Infectious Disease (C.E.B.), the Rhodes Trust (K.M.B.), a Marie Curie Intra European Fellowship (O.B.), the Engineering and Physical Sciences Research Council (Platform Grant to B.G.D.) and the Bill and Melinda Gates Foundation through the Tuberculosis Drug Accelerator Program (C.E.B., B.G.D.).

Author information

Authors and Affiliations

Authors

Contributions

K.M.B., H.I.B., C.S.B., L.E.V., C.E.B. and B.G.D. designed experiments. K.M.B., O.B., M.K.P., F.D. and S.S.L. synthesized compounds. K.M.B., K.T. and H.I.B. performed uptake experiments. C.S.B. and K.M.B. performed substrate screens. K.M.B., H.I.B., C.S.B., C.E.B. and B.G.D. analyzed results. K.M.B., C.E.B. and B.G.D. wrote the paper.

Corresponding authors

Correspondence to Clifton E Barry III or Benjamin G Davis.

Ethics declarations

Competing interests

The work from this paper has been filed as a patent application for the detection of mycobacteria by the University of Oxford and the US National Institutes of Health and, if licensed, will afford authors royalties in line with the set down guidelines of both institutions.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–34, Supplementary Schemes 1–16 and Supplementary Table (PDF 13676 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backus, K., Boshoff, H., Barry, C. et al. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat Chem Biol 7, 228–235 (2011). https://doi.org/10.1038/nchembio.539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing