Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges

Abstract

Naturally produced polybrominated diphenyl ethers (PBDEs) pervade the marine environment and structurally resemble toxic man-made brominated flame retardants. PBDEs bioaccumulate in marine animals and are likely transferred to the human food chain. However, the biogenic basis for PBDE production in one of their most prolific sources, marine sponges of the order Dysideidae, remains unidentified. Here, we report the discovery of PBDE biosynthetic gene clusters within sponge-microbiome-associated cyanobacterial endosymbionts through the use of an unbiased metagenome-mining approach. Using expression of PBDE biosynthetic genes in heterologous cyanobacterial hosts, we correlate the structural diversity of naturally produced PBDEs to modifications within PBDE biosynthetic gene clusters in multiple sponge holobionts. Our results establish the genetic and molecular foundation for the production of PBDEs in one of the most abundant natural sources of these molecules, further setting the stage for a metagenomic-based inventory of other PBDE sources in the marine environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic and naturally occurring polyhalogenated molecules.
Figure 2: Host and symbiont phylogenies.
Figure 3: Representative 16S rRNA gene diversity profiles.
Figure 4: Discovery of hs_bmp gene clusters.
Figure 5: Functional characterization of Clade Ia hs_bmp genes.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

References

  1. Hites, R.A. Dioxins: an overview and history. Environ. Sci. Technol. 45, 16–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wiseman, S.B. et al. Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. Mar. Pollut. Bull. 63, 179–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Gribble, G.W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update Vol. 91 (Springer, Vienna, 2010).

  4. Agarwal, V. et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 10, 640–647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma, G.M. & Vig, B. Studies on the antimicrobial substances of sponges. VI. Structures of two antibacterial substances isolated from the marine sponge Dysidea herbacea. Tetrahedr. Lett. 13, 1715–1718 (1972).

    Article  Google Scholar 

  6. Carté, B. & Faulkner, D.J. Polybrominated diphenyl ethers from Dysidea herbacea, Dysidea chlorea and Phyllospongia foliascens. Tetrahedron 37, 2335–2339 (1981).

    Article  Google Scholar 

  7. Calcul, L. et al. NMR strategy for unraveling structures of bioactive sponge-derived oxy-polyhalogenated diphenyl ethers. J. Nat. Prod. 72, 443–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agarwal, V. et al. Complexity of naturally produced polybrominated diphenyl ethers revealed via mass spectrometry. Environ. Sci. Technol. 49, 1339–1346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Unson, M.D., Holland, N.D. & Faulkner, D.J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994).

    Article  CAS  Google Scholar 

  10. Becerro, M.A. & Paul, V.J. Effects of depth and light on secondary metabolites and cyanobacterial symbionts of the sponge Dysidea granulosa. Mar. Ecol. Prog. Ser. 280, 115–128 (2004).

    Article  CAS  Google Scholar 

  11. Utkina, N.K. et al. Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. J. Nat. Prod. 64, 151–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Utkina, N.K., Denisenko, V.A., Virovaya, M.V., Scholokova, O.V. & Prokof'eva, N.G. Two new minor polybrominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi. J. Nat. Prod. 65, 1213–1215 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Vetter, W. et al. Sponge halogenated natural products found at parts-per-million levels in marine mammals. Environ. Toxicol. Chem. 21, 2014–2019 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Teuten, E.L., Xu, L. & Reddy, C.M. Two abundant bioaccumulated halogenated compounds are natural products. Science 307, 917–920 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Shaul, N.J. et al. Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight. Environ. Sci. Technol. 49, 1328–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Wan, Y. et al. Hydroxylated polybrominated diphenyl ethers and bisphenol A in pregnant women and their matching fetuses: placental transfer and potential risks. Environ. Sci. Technol. 44, 5233–5239 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H.S. et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in blood plasma of humans in Hong Kong. Environ. Int. 47, 66–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, A. et al. Hydroxylated polybrominated diphenyl ethers in paired maternal and cord sera. Environ. Sci. Technol. 47, 3902–3908 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salomon, C.E. & Faulkner, D.J. Localization studies of ioactive cyclic peptides in the ascidian Lissoclinum patella. J. Nat. Prod. 65, 689–692 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hildebrand, M. et al. Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat. Prod. Rep. 21, 122–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Simmons, T.L. et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. USA 105, 4587–4594 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anagnostidis, K. & Komárek, J. Modern approach to the classification system of cyanophytes. 3 - Oscillatoriales. Archiv für Hydrobiologie Suppl. 50–53, 327–472 (1988).

    Google Scholar 

  24. Hinde, R., Pironet, F. & Borowitzka, M.A. Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar. Biol. 119, 99–104 (1994).

    Article  Google Scholar 

  25. Ridley, C.P. et al. Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem. Biol. 12, 397–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ridley, C.P., John Faulkner, D. & Haygood, M.G. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl. Environ. Microbiol. 71, 7366–7375 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Medema, M.H. & Fischbach, M.A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wischang, D. & Hartung, J. Bromination of phenols in bromoperoxidase-catalyzed oxidations. Tetrahedron 68, 9456–9463 (2012).

    Article  CAS  Google Scholar 

  29. Wischang, D., Radlow, M. & Hartung, J. Vanadate-dependent bromoperoxidases from Ascophyllum nodosum in the synthesis of brominated phenols and pyrroles. Dalton Trans. 42, 11926–11940 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Erpenbeck, D. et al. Evolution, radiation and chemotaxonomy of Lamellodysidea, a demosponge genus with anti-plasmodial metabolites. Mar. Biol. 159, 1119–1127 (2012).

    Article  CAS  Google Scholar 

  31. Thacker, R.W. & Starnes, S. Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar. Biol. 142, 643–648 (2003).

    Article  CAS  Google Scholar 

  32. Redmond, N.E. et al. Phylogeny and systematics of demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Integr. Comp. Biol. 53, 388–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Unson, M.D. et al. New polychlorinated amino acid derivatives from the marine sponge Dysidea herbacea. J. Org. Chem. 58, 6336–6343 (1993).

    Article  CAS  Google Scholar 

  34. Hentschel, U. et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431–4440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hentschel, U., Piel, J., Degnan, S.M. & Taylor, M.W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal, V. & Moore, B.S. Enzymatic synthesis of polybrominated dioxins from the marine environment. ACS Chem. Biol. 9, 1980–1984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. El Gamal, A. et al. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. Proc. Natl. Acad. Sci. USA 113, 3797–3802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. El Gamal, A., Agarwal, V., Rahman, I. & Moore, B.S. Enzymatic reductive dehalogenation controls the biosynthesis of marine bacterial pyrroles. J. Am. Chem. Soc. 138, 13167–13170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flatt, P. et al. Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar. Biol. 147, 761–774 (2005).

    Article  CAS  Google Scholar 

  40. Fisch, K.M. et al. Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat. Chem. Biol. 5, 494–501 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Podell, S. & Gaasterland, T. DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol. 8, R16 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fiedler, G., Arnold, M. & Maldener, I. Sequence and mutational analysis of the devBCA gene cluster encoding a putative ABC transporter in the cyanobacterium Anabaena variabilis ATCC 29413. Biochim. Biophys. Acta 1375, 140–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Taton, A. et al. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res. 42, e136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Flórez, L.V., Biedermann, P.H., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).

    Article  PubMed  Google Scholar 

  45. Pennings, S.C., Pablo, S.R., Paul, V.J. & Duffy, J.E. Effects of sponge secondary metabolites in different diets on feeding by 3 groups of consumers. J. Exp. Mar. Biol. Ecol. 180, 137–149 (1994).

    Article  Google Scholar 

  46. Kwan, J.C. et al. Genome streamlining and chemical defense in a coral reef symbiosis. Proc. Natl. Acad. Sci. USA 109, 20655–20660 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marsh, G. et al. Identification, quantification, and synthesis of a novel dimethoxylated polybrominated biphenyl in marine mammals caught off the coast of Japan. Environ. Sci. Technol. 39, 8684–8690 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Malmvärn, A., Zebühr, Y., Kautsky, L., Bergman, K. & Asplund, L. Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere 72, 910–916 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Suyama, T.L., Cao, Z., Murray, T.F. & Gerwick, W.H. Ichthyotoxic brominated diphenyl ethers from a mixed assemblage of a red alga and cyanobacterium: structure clarification and biological properties. Toxicon 55, 204–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt, E.W. & Donia, M.S. Chapter 23. Cyanobactin ribosomally synthesized peptides--a case of deep metagenome mining. Methods Enzymol. 458, 575–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332 (1997).

    PubMed  PubMed Central  Google Scholar 

  52. Parada, A.E., Needham, D.M. & Fuhrman, J.A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Caporaso, J.G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Paulson, J.N., Stine, O.C., Bravo, H.C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Podell, S. et al. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One 8, e61692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma, A.T., Schmidt, C.M. & Golden, J.W. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl. Environ. Microbiol. 80, 6704–6713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clerico, E.M., Ditty, J.L. & Golden, S.S. Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol. Biol. 362, 155–171 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleague B.M. Duggan at the University of California, San Diego for assistance in acquiring NMR data. This work was supported by the US National Science Foundation (DGE-1144086 Graduate Research Fellowship to J.M.B., OCE-1313747 to P.R.J., E.E.A., and B.S.M., IOS-1120113 to J.S.B., MCB-1149552 to E.E.A.); the US National Institutes of Health (K99ES026620 to V.A., R01-GM107557 to E.W.S., P01-ES021921 to P.R.J., E.E.A., and B.S.M., R01-CA172310 to V.J.P., instrument grant S10-OD010640); the US Department of Energy (DE-EE0003373 to J.W.G.); and the Helen Hay Whitney Foundation postdoctoral fellowship to V.A.

Author information

Authors and Affiliations

Authors

Contributions

V.A., S.P., A.T., E.W.S., V.J.P., E.E.A., and B.S.M. designed the study. V.A. performed chemical characterization; V.A., A.T., and J.W.G. performed cyanobacterial expression experiments; J.M.B., M.A.S., J.B., and P.R.J. performed phylogenetic analyses; S.P. performed metagenomic analyses; Z.L., V.J.P., and J.S.B. provided sponge samples, analytical tools and reagents; and V.A., J.M.B., S.P., E.E.A., and B.S.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Eric E Allen or Bradley S Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–9 and Supplementary Figures 1–10 (PDF 2151 kb)

Supplementary Note

NMR Characterization Data (PDF 853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, V., Blanton, J., Podell, S. et al. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol 13, 537–543 (2017). https://doi.org/10.1038/nchembio.2330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing