Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Layers of structure and function in protein aggregation

Protein aggregation is a central hallmark of many neurodegenerative disorders, but the relationship of aggregate structural diversity to the resultant cellular cytotoxicity and phenotypic diversity has remained obscure. Recent advances in understanding the mechanisms of protein aggregation and their physiological consequences have been achieved through chemical biology approaches, such as rationally designed protein modifications and chemical probes, providing crucial mechanistic insights and promise for therapeutic strategies for brain disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural polymorphism of monomeric and misfolded proteins as a molecular basis of the phenotypic diversity of neurodegenerative diseases.
Figure 2: Interventional strategy for neurodegenerative diseases through targeting of elementary processes associated with protein aggregates.

References

  1. Knowles, T.P., Vendruscolo, M. & Dobson, C.M. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  Google Scholar 

  2. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  3. Haass, C. & Selkoe, D.J. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  Google Scholar 

  4. Jucker, M. & Walker, L.C. Nature 501, 45–51 (2013).

    Article  CAS  Google Scholar 

  5. Eisenberg, D. & Jucker, M. Cell 148, 1188–1203 (2012).

    Article  CAS  Google Scholar 

  6. Lu, J.X. et al. Cell 154, 1257–1268 (2013).

    Article  CAS  Google Scholar 

  7. Campioni, S. et al. Nat. Chem. Biol. 6, 140–147 (2010).

    Article  CAS  Google Scholar 

  8. Ohhashi, Y., Ito, K., Toyama, B.H., Weissman, J.S. & Tanaka, M. Nat. Chem. Biol. 6, 225–230 (2010).

    Article  CAS  Google Scholar 

  9. Karamanos, T.K., Kalverda, A.P., Thompson, G.S. & Radford, S.E. Mol. Cell 55, 214–226 (2014).

    Article  CAS  Google Scholar 

  10. Cremades, N. et al. Cell 149, 1048–1059 (2012).

    Article  CAS  Google Scholar 

  11. Woods, L.A. et al. Nat. Chem. Biol. 7, 730–739 (2011).

    Article  CAS  Google Scholar 

  12. Miller, J. et al. Nat. Chem. Biol. 7, 925–934 (2011).

    Article  CAS  Google Scholar 

  13. Perchiacca, J.M., Ladiwala, A.R., Bhattacharya, M. & Tessier, P.M. Proc. Natl. Acad. Sci. USA 109, 84–89 (2012).

    Article  CAS  Google Scholar 

  14. Ehrnhoefer, D.E. et al. Nat. Struct. Mol. Biol. 15, 558–566 (2008).

    Article  CAS  Google Scholar 

  15. Bieschke, J. et al. Nat. Chem. Biol. 8, 93–101 (2011).

    Article  Google Scholar 

  16. Tyedmers, J., Mogk, A. & Bukau, B. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

    Article  CAS  Google Scholar 

  17. Jackrel, M.E. et al. Cell 156, 170–182 (2014).

    Article  CAS  Google Scholar 

  18. Zhou, C. et al. Cell 147, 1186–1196 (2011).

    Article  CAS  Google Scholar 

  19. Liu, B. et al. Cell 140, 257–267 (2010).

    Article  CAS  Google Scholar 

  20. Zhou, C. et al. Cell 159, 530–542 (2014).

    Article  CAS  Google Scholar 

  21. Ren, P.H. et al. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  Google Scholar 

  22. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. Cell 137, 146–158 (2009).

    Article  CAS  Google Scholar 

  23. Nakayashiki, T., Kurtzman, C.P., Edskes, H.K. & Wickner, R.B. Proc. Natl. Acad. Sci. USA 102, 10575–10580 (2005).

    Article  CAS  Google Scholar 

  24. Tuite, M.F. & Serio, T.R. Nat. Rev. Mol. Cell Biol. 11, 823–833 (2010).

    Article  CAS  Google Scholar 

  25. Tyedmers, J., Madariaga, M.L. & Lindquist, S. PLoS Biol. 6, e294 (2008).

    Article  Google Scholar 

  26. Suzuki, G., Shimazu, N. & Tanaka, M. Science 336, 355–359 (2012).

    Article  CAS  Google Scholar 

  27. Jarosz, D.F., Lancaster, A.K., Brown, J.C. & Lindquist, S. Cell 158, 1072–1082 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the collaborators that have contributed to our work in this research area. In our work, the funding was provided by the Next program (LS129; M.T.) from the Japan Society for the Promotion of Science, Grants-in-Aid from the Ministry of Health, Labour, and Welfare, Japan (the Research Committee of Prion Disease and Slow Virus Infection; M.T.) and from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT; Young Scientist (B) 25830025; Y.K.), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomasa Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Komi, Y. Layers of structure and function in protein aggregation. Nat Chem Biol 11, 373–377 (2015). https://doi.org/10.1038/nchembio.1818

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing