Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Drug discovery

Diversifying complexity

A synthetic strategy that uses a series of simple reactions to distort the core architecture of complex natural products could provide libraries of stereochemically rich compounds that will help in the search for new biological probes and drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ring-distortion approach to generating diverse molecular scaffolds from complex natural products.

References

  1. Dixon, N., Wong, L. S., Geerlings, T. H. & Micklefield, J. Nat. Prod. Rep. 24, 1288–1310 (2007).

    Article  CAS  Google Scholar 

  2. Carlson, E. E. ACS Chem. Biol. 5, 639–653 (2010).

    Article  CAS  Google Scholar 

  3. Newman, D. J. & Cragg, G. M. J. Nat. Prod. 75, 311–335 (2012).

    Article  CAS  Google Scholar 

  4. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Nature Rev. Drug Discov. 11, 191–200 (2012).

    Article  CAS  Google Scholar 

  5. Pommier, Y. & Marchand, C. Nature Rev. Drug Discov. 11, 25–36 (2012).

    Article  CAS  Google Scholar 

  6. Burke, M. D. & Schreiber, S. L. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  Google Scholar 

  7. Wetzel, S., Bon, R. S., Kumar, K. & Waldmann, H. Angew. Chem. Int. Ed. 50, 10800–10826 (2011).

    Article  CAS  Google Scholar 

  8. Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Curr. Opin. Chem. Biol. 14, 347–361 (2010).

    Article  CAS  Google Scholar 

  9. Bauer, R. A., Wurst, J. M. & Tan, D. S. Curr. Opin. Chem. Biol. 14, 308–314 (2010).

    Article  CAS  Google Scholar 

  10. Hert, J., Irwin, J. J., Laggner, C., Keiser, M. J. & Shoichet, B. K. Nature Chem. Biol. 5, 479–483 (2009).

    Article  CAS  Google Scholar 

  11. Clemons, P. A. et al. Proc. Natl Acad. Sci. USA 107, 18787–18792 (2010).

    Article  CAS  Google Scholar 

  12. Lovering, F., Bikker, J. & Humblet, C. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  13. Ritchie, T. J. & MacDonald, S. J. F. Drug Discov. Today 14, 1011–1020 (2009).

    Article  CAS  Google Scholar 

  14. Luker, T. et al. Bioorg. Med. Chem. Lett. 21, 5673–5679 (2011).

    Article  CAS  Google Scholar 

  15. Huigens, R. W. III et al. Nature Chem. 5, 195–202 (2013).10.1038/nchem.1549

    Article  CAS  Google Scholar 

  16. Nielsen, T. E. & Schreiber, S. L. Angew. Chem. Int. Ed. 47, 48–56 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek S. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, I., Tan, D. Diversifying complexity. Nature Chem 5, 157–158 (2013). https://doi.org/10.1038/nchem.1581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing