Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionization of dimethyluracil dimers leads to facile proton transfer in the absence of hydrogen bonds

Abstract

Proton transfer is ubiquitous in chemistry and biology, occurring, for example, in proteins, enzyme reactions and across proton channels and pumps. However, it has always been described in the context of hydrogen-bonding networks (‘proton wires’) acting as proton conduits. Here, we report efficient intramolecular ionization-induced proton transfer across a 1,3-dimethyluracil dimer, a model π-stacked system with no hydrogen bonds. Upon photoionization by tunable vacuum ultraviolet synchrotron radiation, the dimethyluracil dimer undergoes proton transfer and dissociates to produce a protonated monomer. Deuterated dimethyluracil experiments confirm that proton transfer occurs from the methyl groups and not from the aromatic C–H sites. Calculations reveal qualitative differences between the proton transfer reaction coordinate in the π-stacked and hydrogen-bonded base pairs, and that proton transfer in methylated dimers involves significant rearrangements of the two fragments, facilitating a relatively low potential energy barrier of only 0.6 eV in the ionized dimer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VUV-SPI mass spectra and photoionization efficiency curves.
Figure 2: Relevant computed energetics (eV) of the non-methylated hydrogen-bonded and methylated uracil dimers.
Figure 3: Effect of deuteration on the 1,3-mU mass spectrum and photoionization efficiency curves.
Figure 4: Experimental branching ratios for the proton transfer channel in the uracil, 1,3-mU and d6-1,3-mU beams.
Figure 5: Relevant energetic and structural parameters illustrating the mechanism of ionization-induced proton transfer.

Similar content being viewed by others

References

  1. Schultz, T. et al. Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306, 1765–1768 (2004).

    Article  CAS  Google Scholar 

  2. Ghosh, A. K. & Schuster, G. B. Role of the guanine N1 imino proton in the migration and reaction of radical cations in DNA oligomers. J. Am. Chem. Soc. 128, 4172–4173 (2006).

    Article  CAS  Google Scholar 

  3. Kennis, J. T. M. et al. Uncovering the hidden ground state of green fluorescent protein. Proc. Natl Acad. Sci. USA 101, 17988–17993 (2004).

    Article  CAS  Google Scholar 

  4. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  Google Scholar 

  5. Chakraborty, T. in Charge Migration in DNA: Perspectives from Physics, Chemistry, and Biology (Springer Verlag, 2007).

    Book  Google Scholar 

  6. Decoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).

    Article  CAS  Google Scholar 

  7. Nagle, J. F. & Morowitz, H. J. Molecular mechanims for proton transport in membranes. Proc. Natl Acad. Sci. USA 75, 298–302 (1978).

    Article  CAS  Google Scholar 

  8. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).

    Article  CAS  Google Scholar 

  9. Sobolewski, A. L., Domcke, W. & Hattig, C. Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc. Natl Acad. Sci. USA 102, 17903–17906 (2005).

    Article  CAS  Google Scholar 

  10. Perun, S., Sobolewski, A. L. & Domcke, W. Role of electron-driven proton-transfer processes in the excited-state deactivation adenine–thymine base pair. J. Phys. Chem. A 110, 9031–9038 (2006).

    Article  CAS  Google Scholar 

  11. Wahl, M. C. & Sundaralingam, M. C–H···O hydrogen bonding in biology. Trends Biochem. Sci. 22, 97–102 (1997).

    Article  CAS  Google Scholar 

  12. Marfurt, J. & Leumann, C. Evidence for C–H=O hydrogen bond assisted recognition of a pyrimidine base in the parallel DNA triple-helical motif. Angew. Chem. Int. Ed. 37, 175–177 (1998).

    Article  CAS  Google Scholar 

  13. Loganathan, D. & Aich, U. Observation of a unique pattern of bifurcated hydrogen bonds in the crystal structures of the N-glycoprotein linkage region models. Glycobiology 16, 343–348 (2006).

    Article  CAS  Google Scholar 

  14. Somorjai, G. A., Tao, F. & Butcher, D. in Scanning Tunneling Microscopy in Surface Science 189–217 (Wiley-VCH Verlag, 2010).

    Google Scholar 

  15. Keiluweit, M. & Kleber, M. Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ. Sci. Technol. 43, 3421–3429 (2009).

    Article  CAS  Google Scholar 

  16. Crespo-Hernandez, C. E., Cohen, B., Hare, P. M. & Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104, 1977–2019 (2004).

    Article  CAS  Google Scholar 

  17. Middleton, C. T. et al. DNA excited-state dynamics: from single bases to the double helix. Annu. Rev. Phys. Chem. 60, 217–239 (2009).

    Article  CAS  Google Scholar 

  18. Kanvah, S. et al. Oxidation of DNA: damage to nucleobases. Acc. Chem. Res. 43, 280–287 (2009).

    Article  Google Scholar 

  19. Schreier, W. J. et al. Thymine dimerization in DNA is an ultrafast photoreaction. Science 315, 625–629 (2007).

    Article  CAS  Google Scholar 

  20. Bhosale, S. et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science 313, 84–86 (2006).

    Article  CAS  Google Scholar 

  21. Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. Synthetic ion channels and pores (2004–2005). Chem. Soc. Rev. 35, 1269–1286 (2006).

    Article  CAS  Google Scholar 

  22. Satzger, H., Townsend, D. & Stolow, A. Reassignment of the low lying cationic states in gas phase adenine and 9-methyl adenine. Chem. Phys. Lett. 430, 144–148 (2006).

    Article  CAS  Google Scholar 

  23. Meredith, P. & Sarna, T. The physical and chemical properties of eumelanin. Pigment Cell Res. 19, 572–594 (2006).

    Article  CAS  Google Scholar 

  24. d'Ischia, M., Napolitano, A., Pezzella, A., Meredith, P. & Sarna, T. Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew. Chem. Int. Ed. 48, 3914–3921 (2009).

    Article  CAS  Google Scholar 

  25. Kobayashi, K. & Tagawa, S. Direct observation of guanine radical cation deprotonation in duplex DNA using pulse radiolysis. J. Am. Chem. Soc. 125, 10213–10218 (2003).

    Article  CAS  Google Scholar 

  26. Adhikary, A., Khanduri, D. & Sevilla, M. D. Direct observation of the hole protonation state and hole localization site in DNA-oligomers. J. Am. Chem. Soc. 131, 8614–8619 (2009).

    Article  CAS  Google Scholar 

  27. Gador, N. et al. Electronic structure of adenine and thymine base pairs studied by femtosecond electron-ion coincidence spectroscopy. J. Phys. Chem. A 111, 11743–11749 (2007).

    Article  CAS  Google Scholar 

  28. Nir, E., Plutzer, C., Kleinermanns, K. & de Vries, M. Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. Eur. Phys. J. D 20, 317–329 (2002).

    Article  CAS  Google Scholar 

  29. Plutzer, C., Hunig, I. & Kleinermanns, K. Pairing of the nucleobase adenine studied by IR–UV double-resonance spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 5, 1158–1163 (2003).

    Article  Google Scholar 

  30. Zadorozhnaya, A. A. & Krylov, A. I. Ionization-induced structural changes in uracil dinners and their spectroscopic signatures. J. Chem. Theoret. Comput. 6, 705–717 (2010).

    Article  CAS  Google Scholar 

  31. Zadorozhnaya, A. A. & Krylov, A. I. Zooming into π-stacked manifolds of nucleobases: ionized states of dimethylated uracil dimers. J. Phys. Chem. A 114, 2001–2009 (2010).

    Article  CAS  Google Scholar 

  32. Golubeva, A. A. & Krylov, A. I. The effect of π-stacking and H-bonding on ionization energies of a nucleobase:uracil dimer cation. Phys. Chem. Chem. Phys. 11, 1303–1311 (2009).

    Article  CAS  Google Scholar 

  33. Bravaya, K. B., Kostko, O., Ahmed, M. & Krylov, A. I. The effect of π-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine–adenine, thymine–thymine and adenine–thymine dimers. Phys. Chem. Chem. Phys. 12, 2292–2307 (2010).

    Article  CAS  Google Scholar 

  34. de Vries, M. S. & Hobza, P. Gas-phase spectroscopy of biomolecular building blocks. Annu. Rev. Phys. Chem. 58, 585–612 (2007).

    Article  CAS  Google Scholar 

  35. Munson, M. S. B. & Field, F. H. Chemical ionization mass spectrometry. I. General introduction. J. Am. Chem. Soc. 88, 2621–2630 (1966).

    Article  CAS  Google Scholar 

  36. Gronert, S., Feng, W. Y., Chew, F. & Wu, W. The gas phase acid/base properties of 1,3,-dimethyluracil, 1-methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5′-monophosphate decarboxylase. Int. J. Mass Spectrom. 195–196, 251–258 (2000).

    Article  Google Scholar 

  37. Jochims, H. W., Schwell, M., Baumgartel, H. & Leach, S. Photoion mass spectrometry of adenine, thymine and uracil in the 6–22 eV photon energy range. Chem. Phys. 314, 263–282 (2005).

    Article  CAS  Google Scholar 

  38. Kabelac, M. & Hobza, P. At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study. Chem. Euro. J. 7, 2067–2074 (2001).

    Article  CAS  Google Scholar 

  39. Kabelac, M. & Hobza, P. Potential energy and free energy surfaces of all ten canonical and methylated nucleic acid base pairs: molecular dynamics and quantum chemical ab initio studies. J. Phys. Chem. B 105, 5804–5817 (2001).

    Article  CAS  Google Scholar 

  40. He, Y. G., Wu, C. Y. & Kong, W. Photophysics of methyl-substituted uracils and thymines and their water complexes in the gas phase. J. Phys. Chem. A 108, 943–949 (2004).

    Article  CAS  Google Scholar 

  41. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Ann. Rev. Plant Biol. 54, 519–546 (2003).

    Article  CAS  Google Scholar 

  42. Takahashi, L. K. et al. VUV photoionization and mass spectrometric characterization of the lignin monomers coniferyl and sinapyl alcohol. J. Phys. Chem. A 115, 3279–3290 (2011).

    Article  CAS  Google Scholar 

  43. Belau, L., Wilson, K. R., Leone, S. R. & Ahmed, M. Vacuum–ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine). J. Phys. Chem. A 111, 7562–7568 (2007).

    Article  CAS  Google Scholar 

  44. Shao, Y. et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Experiments were carried out at the Advanced Light Source, and the d6-1,3-mU was synthesized at the Molecular Foundry, both at Lawrence Berkeley National Laboratory. Berkeley participants are supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231), through the Chemical Sciences Division (A.G., O.K., S.R.L., M.A.) and the Materials Sciences Division (R.K.). R.K. is also supported by the Defense Threat Reduction Agency (IACRO-B0845281). This work was conducted in the framework of the iOpenShell Center (iopenshell.usc.edu), supported by the National Science Foundation through CRIF:CRF (CHE-0625419 + 0624602 + 0625237 and CHE-0951634, to A.I.K.) grants.

Author information

Authors and Affiliations

Authors

Contributions

M.A. conceived and designed the experiments. A.G. and O.K. conducted the experiments. R.K. synthesized the deuterated compounds. K.B.B. and A.I.K. performed electronic structure calculations. A.G. and K.B.B. contributed equally to this work. A.G., K.B.B., A.I.K., M.A. and S.R.L. co-wrote the paper.

Corresponding authors

Correspondence to Anna I. Krylov or Musahid Ahmed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golan, A., Bravaya, K., Kudirka, R. et al. Ionization of dimethyluracil dimers leads to facile proton transfer in the absence of hydrogen bonds. Nature Chem 4, 323–329 (2012). https://doi.org/10.1038/nchem.1298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing