Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease

Abstract

Many models of disease progression in Alzheimer’s disease (AD) have been proposed to help guide experimental design and aid the interpretation of results. Models focussing on the genetic evidence include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two decades. However, the ACH has never been fully accepted and has not yet delivered on its therapeutic promise. We review the ACH, PSH and AMA in relation to levels of APP proteolytic fragments reported from AD-associated mutations in APP. Different APP mutations have diverse effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three disease pathways that can differ between familial and sporadic AD and two pathways associated with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the effects of mutations in APP as the APP proteolytic system has not been investigated systematically. The confounding effects of sequence homology, complexity of competing cleavages and antibody cross reactivities all illustrate limitations in our understanding of the roles these fragments and the APP proteolytic system as a whole in normal aging and disease play. Current experimental design should be refined to generate clearer evidence, addressing both aging and complex disorders with standardised reporting formats. A more flexible theoretical framework capable of accommodating the complexity of the APP proteolytic system is required to integrate available evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ryan NS, Rossor MN . Correlating familial Alzheimer's disease gene mutations with clinical phenotype. Biomarkers Med 2010; 4: 99–112.

    CAS  Google Scholar 

  2. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39: 1159–1165.

    CAS  PubMed  Google Scholar 

  3. Jack CR Jr., Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 257–262.

    PubMed  PubMed Central  Google Scholar 

  4. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991; 41: 479–486.

    CAS  PubMed  Google Scholar 

  5. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 2012; 8: 1–13.

    PubMed  PubMed Central  Google Scholar 

  6. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S et al. Preclinical Alzheimer's disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12: 292–323.

    PubMed  PubMed Central  Google Scholar 

  7. Weise D, Tiepolt S, Awissus C, Hoffmann KT, Lobsien D, Kaiser T et al. Critical comparison of different biomarkers for Alzheimer's disease in a clinical setting. J Alzheimers Dis 2015; 48: 425–432.

    CAS  PubMed  Google Scholar 

  8. Vos SJ, Gordon BA, Su Y, Visser PJ, Holtzman DM, Morris JC et al. NIA-AA staging of preclinical Alzheimer disease: discordance and concordance of CSF and imaging biomarkers. Neurobiol Aging 2016; 44: 1–8.

    PubMed  PubMed Central  Google Scholar 

  9. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR . "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 2000; 55: 370–376.

    CAS  PubMed  Google Scholar 

  10. Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C . Age, neuropathology, and dementia. N Engl J Med 2009; 360: 2302–2309.

    CAS  PubMed  Google Scholar 

  11. Brayne C, Richardson K, Matthews FE, Fleming J, Hunter S, Xuereb JH et al. Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75s cohort (CC75C) study. J Alzheimers Dis 2009; 18: 645–658.

    PubMed  Google Scholar 

  12. MRC-CFAS. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 2001; 357: 169–175.

    Google Scholar 

  13. Blass JP . Alzheimer's disease and Alzheimer's dementia: distinct but overlapping entities. Neurobiol Aging 2002; 23: 1077–1084.

    PubMed  Google Scholar 

  14. Nunomura A, Castellani RJ, Lee HG, Moreira PI, Zhu X, Perry G et al. Neuropathology in Alzheimer's disease: awaking from a hundred-year-old dream. Sci Aging Knowledge Environ 2006; 2006: pe10.

    PubMed  Google Scholar 

  15. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 263–269.

    PubMed  PubMed Central  Google Scholar 

  16. Ritchie C, Smailagic N, Noel-Storr AH, Takwoingi Y, Flicker L, Mason SE et al. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2014; 6: CD008782.

    Google Scholar 

  17. Abbasowa L, Heegaard NH . A systematic review of amyloid-beta peptides as putative mediators of the association between affective disorders and Alzheimers disease. J Affect Disord 2014; 168: 167–183.

    CAS  PubMed  Google Scholar 

  18. Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R et al. (11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2014; 7: CD010386.

    Google Scholar 

  19. Bettcher BM, Kramer JH . Longitudinal inflammation, cognitive decline, and Alzheimer's disease: a mini-review. Clin Pharmacol Ther 2014; 96: 464–469.

    CAS  PubMed  Google Scholar 

  20. Estes ML, McAllister AK . Alterations in immune cells and mediators in the brain: it's not always neuroinflammation!. Brain Pathol 2014; 24: 623–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14: 388–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heppner FL, Ransohoff RM, Becher B . Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16: 358–372.

    CAS  PubMed  Google Scholar 

  23. Moreira PI, Cardoso SM, Santos MS, Oliveira CR . The key role of mitochondria in Alzheimer's disease. J Alzheimers Dis 2006; 9: 101–110.

    CAS  PubMed  Google Scholar 

  24. Moreira PI, Honda K, Liu Q, Santos MS, Oliveira CR, Aliev G et al. Oxidative stress: the old enemy in Alzheimer's disease pathophysiology. Curr Alzheimer Res 2005; 2: 403–408.

    CAS  PubMed  Google Scholar 

  25. Accardi G, Caruso C, Colonna-Romano G, Camarda C, Monastero R, Candore G . Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res 2012; 15: 217–221.

    CAS  PubMed  Google Scholar 

  26. Moreira PI . Alzheimer's disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis 2012; 30 (Suppl 2): S199–S215.

    PubMed  Google Scholar 

  27. Hoyer S . The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J Neural Transm 2002; 109: 991–1002.

    CAS  PubMed  Google Scholar 

  28. Gasparini L, Netzer WJ, Greengard P, Xu H . Does insulin dysfunction play a role in Alzheimer's disease? Trends Pharmacol Sci 2002; 23: 288–293.

    CAS  PubMed  Google Scholar 

  29. Koudinov AR, Koudinova NV . Cholesterol, synaptic function and Alzheimer's disease. Pharmacopsychiatry 2003; 36 (Suppl 2): S107–S112.

    CAS  PubMed  Google Scholar 

  30. Koudinov AR, Koudinova NV . Cholesterol homeostasis failure as a unifying cause of synaptic degeneration. J Neurol Sci 2005; 229-230: 233–240.

    CAS  PubMed  Google Scholar 

  31. Arendt T, Bruckner MK . Linking cell-cycle dysfunction in Alzheimer's disease to a failure of synaptic plasticity. Biochim Biophys Acta 2007; 1772: 413–421.

    CAS  PubMed  Google Scholar 

  32. Arendt T . Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the 'Dr. Jekyll and Mr. Hyde concept' of Alzheimer's disease or the yin and yang of neuroplasticity. Prog Neurobiol 2003; 71: 83–248.

    PubMed  Google Scholar 

  33. Perry EK . The cholinergic system in old age and Alzheimer's disease. Age Ageing 1980; 9: 1–8.

    CAS  PubMed  Google Scholar 

  34. Bartus RT, Dean RL 3rd, Beer B, Lippa AS . The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408–414.

    CAS  PubMed  Google Scholar 

  35. Mann DM, Yates PO . Neurotransmitter deficits in Alzheimer's disease and in other dementing disorders. Hum Neurobiol 1986; 5: 147–158.

    CAS  PubMed  Google Scholar 

  36. Butterfield DA, Pocernich CB . The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs 2003; 17: 641–652.

    CAS  PubMed  Google Scholar 

  37. Hynd MR, Scott HL, Dodd PR . Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int 2004; 45: 583–595.

    CAS  PubMed  Google Scholar 

  38. Castellani RJ, Nunomura A, Lee HG, Perry G, Smith MA . Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 2008; 14: 377–383.

    PubMed  PubMed Central  Google Scholar 

  39. Flach K, Hilbrich I, Schiffmann A, Gaertner U, Krueger M, Leonhardt M et al. Tau oligomers impair artificial membrane integrity and cellular viability. J Biol Chem 2012; 287: 43223–43233.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ward SM, Himmelstein DS, Lancia JK, Binder LI . Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 2012; 40: 667–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Spillantini MG, Goedert M . Tau pathology and neurodegeneration. Lancet Neurol 2013; 12: 609–622.

    CAS  PubMed  Google Scholar 

  42. Maccioni RB, Farias G, Morales I, Navarrete L . The revitalized tau hypothesis on Alzheimer's disease. Arch Med Res 2010; 41: 226–231.

    CAS  PubMed  Google Scholar 

  43. Selkoe DJ . Amyloid beta-peptide is produced by cultured cells during normal metabolism: a reprise. J Alzheimers Dis 2006; 9: 163–168.

    CAS  PubMed  Google Scholar 

  44. Selkoe DJ . Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 2001; 3: 75–80.

    CAS  PubMed  Google Scholar 

  45. Hardy J, Selkoe DJ . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356.

    CAS  PubMed  Google Scholar 

  46. Shen J, Kelleher RJ 3rd . The presenilin hypothesis of Alzheimer's disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci USA 2007; 104: 403–409.

    CAS  PubMed  Google Scholar 

  47. Hunter S, Arendt T, Brayne C . The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol 2013; 48: 556–570.

    CAS  PubMed  Google Scholar 

  48. Hunter S, Brayne C . Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 2012; 4: 10.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Joseph J, Shukitt-Hale B, Denisova NA, Martin A, Perry G, Smith MA . Copernicus revisited: amyloid beta in Alzheimer's disease. Neurobiol Aging 2001; 22: 131–146.

    CAS  PubMed  Google Scholar 

  50. Hunter S, Friedland RP, Brayne C . Time for a change in the research paradigm for Alzheimer's disease: the value of a chaotic matrix modeling approach. CNS Neurosci Ther 2010; 16: 254–262.

    CAS  PubMed  Google Scholar 

  51. Morris GP, Clark IA, Vissel B . Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun 2014; 2: 135.

    PubMed  PubMed Central  Google Scholar 

  52. Regland B, Gottfries CG . The role of amyloid beta-protein in Alzheimer's disease. Lancet 1992; 340: 467–469.

    CAS  PubMed  Google Scholar 

  53. Maarouf CL, Daugs ID, Spina S, Vidal R, Kokjohn TA, Patton RL et al. Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Mol Neurodegener 2008; 3: 20.

    PubMed  PubMed Central  Google Scholar 

  54. Lleo A, Berezovska O, Growdon JH, Hyman BT . Clinical, pathological, and biochemical spectrum of Alzheimer disease associated with PS-1 mutations. Am J Geriatr Psychiatry 2004; 12: 146–156.

    PubMed  Google Scholar 

  55. Le Couteur DG, Hunter S, Brayne C . Solanezumab and the amyloid hypothesis for Alzheimer's disease. BMJ 2016; 355: i6771.

    PubMed  Google Scholar 

  56. Klein WL, Krafft GA, Finch CE . Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 2001; 24: 219–224.

    CAS  PubMed  Google Scholar 

  57. Walsh DM, Selkoe DJ . Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 2004; 44: 181–193.

    CAS  PubMed  Google Scholar 

  58. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S . Abeta-degrading enzymes in Alzheimer's disease. Brain Pathol 2008; 18: 240–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Selkoe DJ . Clearing the brain's amyloid cobwebs. Neuron 2001; 32: 177–180.

    CAS  PubMed  Google Scholar 

  60. Shen J . Function and dysfunction of presenilin. Neurodegener Dis 2014; 13: 61–63.

    CAS  PubMed  Google Scholar 

  61. Heilig EA, Xia W, Shen J, Kelleher RJ 3rd . A presenilin-1 mutation identified in familial Alzheimer disease with cotton wool plaques causes a nearly complete loss of gamma-secretase activity. J Biol Chem 2010; 285: 22350–22359.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun L, Zhou R, Yang G, Shi Y . Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. Proc Natl Acad Sci USA 2017; 114: E476–E485.

    CAS  PubMed  Google Scholar 

  63. Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E et al. Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. Neuron 2015; 85: 967–981.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qian S, Jiang P, Guan XM, Singh G, Trumbauer ME, Yu H et al. Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Abeta1-42/43 expression. Neuron 1998; 20: 611–617.

    CAS  PubMed  Google Scholar 

  65. Le Guennec K, Veugelen S, Quenez O, Szaruga M, Rousseau S, Nicolas G et al. Deletion of exons 9 and 10 of the Presenilin 1 gene in a patient with early-onset Alzheimer disease generates longer amyloid seeds. Neurobiol Dis 2017; 104: 97–103.

    CAS  PubMed  Google Scholar 

  66. Veugelen S, Saito T, Saido TC, Chavez-Gutierrez L, De Strooper B . Familial Alzheimer's disease mutations in presenilin generate amyloidogenic Abeta peptide seeds. Neuron 2016; 90: 410–416.

    CAS  PubMed  Google Scholar 

  67. Fernandez MA, Klutkowski JA, Freret T, Wolfe MS . Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid beta-peptides (Abeta) by gamma-secretase to increase 42-to-40-residue Abeta. J Biol Chem 2014; 289: 31043–31052.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bentahir M, Nyabi O, Verhamme J, Tolia A, Horre K, Wiltfang J et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 2006; 96: 732–742.

    CAS  PubMed  Google Scholar 

  69. Ryan NS, Nicholas JM, Weston PS, Liang Y, Lashley T, Guerreiro R et al. Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series. Lancet Neurol 2016; 15: 1326–1335.

    PubMed  Google Scholar 

  70. Shepherd C, McCann H, Halliday GM . Variations in the neuropathology of familial Alzheimer's disease. Acta Neuropathol 2009; 118: 37–52.

    CAS  PubMed  Google Scholar 

  71. Kelleher RJ 3rd, Shen J . Genetics. Gamma-secretase and human disease. Science 2010; 330: 1055–1056.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mann DM, Pickering-Brown SM, Takeuchi A, Iwatsubo T . Amyloid angiopathy and variability in amyloid beta deposition is determined by mutation position in presenilin-1-linked Alzheimer's disease. Am J Pathol 2001; 158: 2165–2175.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hellstrom-Lindahl E, Viitanen M, Marutle A . Comparison of Abeta levels in the brain of familial and sporadic Alzheimer's disease. Neurochem Int 2009; 55: 243–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pera M, Alcolea D, Sanchez-Valle R, Guardia-Laguarta C, Colom-Cadena M, Badiola N et al. Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. Acta Neuropathol 2013; 125: 201–213.

    CAS  PubMed  Google Scholar 

  75. Benitez BA, Karch CM, Cai Y, Jin SC, Cooper B, Carrell D et al. The PSEN1, p.E318G variant increases the risk of Alzheimer's disease in APOE-epsilon4 carriers. PLoS Genet 2013; 9: e1003685.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sassi C, Guerreiro R, Gibbs R, Ding J, Lupton MK, Troakes C et al. Investigating the role of rare coding variability in Mendelian dementia genes (APP PSEN1 PSEN2 GRN MAPT, and PRNP in late-onset Alzheimer's disease. Neurobiol Aging 2014; 35: 2881 e1–2881 e6.

    Google Scholar 

  77. Barelli H, Lebeau A, Vizzavona J, Delaere P, Chevallier N, Drouot C et al. Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer's disease and cerebral amyloid angiopathy cases. Mol Med 1997; 3: 695–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelleher RJ 3rd, Shen J . Presenilin-1 mutations and Alzheimer's disease. Proc Natl Acad Sci USA 2017; 114: 629–631.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang YW, Thompson R, Zhang H, Xu H . APP processing in Alzheimer's disease. Mol Brain 2011; 4: 3.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Portelius E, Mattsson N, Andreasson U, Blennow K, Zetterberg H . Novel abeta isoforms in Alzheimer's disease - their role in diagnosis and treatment. Curr Pharm Des 2011; 17: 2594–2602.

    CAS  PubMed  Google Scholar 

  81. Hernandez-Guillamon M, Mawhirt S, Blais S, Montaner J, Neubert TA, Rostagno A et al. Sequential amyloid-beta degradation by the matrix metalloproteases MMP-2 and MMP-9. J Biol Chem 2015; 290: 15078–15091.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moore S, Evans LD, Andersson T, Portelius E, Smith J, Dias TB et al. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep 2015; 11: 689–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S et al. eta-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 2015; 526: 443–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Andrew RJ, Kellett KA, Thinakaran G, Hooper NM . A Greek tragedy: the growing complexity of Alzheimer amyloid precursor protein proteolysis. J Biol Chem 2016; 291: 19235–19244.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hunter S, Martin S, Brayne C . The APP proteolytic system and its interactions with dynamic networks in Alzheimer's disease. Methods Mol Biol 2016; 1303: 71–99.

    PubMed  Google Scholar 

  86. Turner PR, O'Connor K, Tate WP, Abraham WC . Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70: 1–32.

    CAS  PubMed  Google Scholar 

  87. Hunter S, Brayne C . Do anti-amyloid beta protein antibody cross reactivities confound Alzheimer disease research? J Negative Results Biomed 2017; 16: 1.

    Google Scholar 

  88. Wegiel J, Kuchna I, Nowicki K, Frackowiak J, Mazur-Kolecka B, Imaki H et al. Intraneuronal Abeta immunoreactivity is not a predictor of brain amyloidosis-beta or neurofibrillary degeneration. Acta Neuropathol 2007; 113: 389–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao JH, Liu HL, Liu YF, Lin HY, Fang HW, Ho Y et al. Molecular dynamics simulations to investigate the aggregation behaviors of the Abeta(17-42) oligomers. J Biomol Struct Dyn 2009; 26: 481–490.

    CAS  PubMed  Google Scholar 

  90. Zheng J, Jang H, Ma B, Tsai CJ, Nussinov R . Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities. Biophys J 2007; 93: 3046–3057.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Miller Y, Ma B, Nussinov R . Polymorphism of Alzheimer's Abeta17-42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J 2009; 97: 1168–1177.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pike CJ, Overman MJ, Cotman CW . Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem 1995; 270: 23895–23898.

    CAS  PubMed  Google Scholar 

  93. Thal DR, Sassin I, Schultz C, Haass C, Braak E, Braak H . Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol 1999; 58: 210–216.

    CAS  PubMed  Google Scholar 

  94. Kumar-Singh S, De Jonghe C, Cruts M, Kleinert R, Wang R, Mercken M et al. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated A beta(42) in Alzheimer's disease. Hum Mol Genet 2000; 9: 2589–2598.

    CAS  PubMed  Google Scholar 

  95. Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ . Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 1996; 149: 1823–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu R, McAllister C, Lyubchenko Y, Sierks MR . Residues 17-20 and 30-35 of beta-amyloid play critical roles in aggregation. J Neurosci Res 2004; 75: 162–171.

    CAS  PubMed  Google Scholar 

  97. Wei W, Norton DD, Wang X, Kusiak JW . Abeta 17-42 in Alzheimer's disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 2002; 125: 2036–2043.

    PubMed  Google Scholar 

  98. Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL et al. Truncated beta-amyloid peptide channels provide an alternative mechanism for Alzheimer's disease and Down syndrome. Proc Natl Acad Sci USA 2010; 107: 6538–6543.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lannfelt L, Basun H, Vigo-Pelfrey C, Wahlund LO, Winblad B, Lieberburg I et al. Amyloid beta-peptide in cerebrospinal fluid in individuals with the Swedish Alzheimer amyloid precursor protein mutation. Neurosci Lett 1995; 199: 203–206.

    CAS  PubMed  Google Scholar 

  100. Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, Kanemitsu H et al. A new amyloid beta variant favoring oligomerization in Alzheimer's-type dementia. Ann Neurol 2008; 63: 377–387.

    CAS  PubMed  Google Scholar 

  101. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 2012; 488: 96–99.

    CAS  PubMed  Google Scholar 

  102. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci 2001; 4: 887–893.

    CAS  PubMed  Google Scholar 

  103. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 1996; 2: 864–870.

    CAS  PubMed  Google Scholar 

  104. Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet 1997; 6: 2087–2089.

    CAS  PubMed  Google Scholar 

  105. Zhou L, Brouwers N, Benilova I, Vandersteen A, Mercken M, Van Laere K et al. Amyloid precursor protein mutation E682K at the alternative beta-secretase cleavage beta'-site increases Abeta generation. EMBO Mol Med 2011; 3: 291–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A, Ramakers M et al. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-beta (Abeta) aggregation. J Biol Chem 2014; 289: 30977–30989.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L et al. Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 1998; 5: 281–286.

    CAS  PubMed  Google Scholar 

  108. Cai XD, Golde TE, Younkin SG . Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 1993; 259: 514–516.

    CAS  PubMed  Google Scholar 

  109. Kaden D, Harmeier A, Weise C, Munter LM, Althoff V, Rost BR et al. Novel APP/Abeta mutation K16N produces highly toxic heteromeric Abeta oligomers. EMBO Mol Med 2012; 4: 647–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. De Strooper B, Simons M, Multhaup G, Van Leuven F, Beyreuther K, Dotti CG . Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J 1995; 14: 4932–4938.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Haass C, Hung AY, Selkoe DJ, Teplow DB . Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 1994; 269: 17741–17748.

    CAS  PubMed  Google Scholar 

  112. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 1992; 359: 322–325.

    CAS  PubMed  Google Scholar 

  113. Suarez-Calvet M, Belbin O, Pera M, Badiola N, Magrane J, Guardia-Laguarta C et al. Autosomal-dominant Alzheimer's disease mutations at the same codon of amyloid precursor protein differentially alter Abeta production. J Neurochem 2014; 128: 330–339.

    CAS  PubMed  Google Scholar 

  114. Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G et al. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 2009; 323: 1473–1477.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D et al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 1992; 359: 325–327.

    CAS  PubMed  Google Scholar 

  116. Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D et al. Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 —> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc Natl Acad Sci USA 1999; 96: 4119–4124.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen WT, Hong CJ, Lin YT, Chang WH, Huang HT, Liao JY et al. Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS ONE 2012; 7: e35807.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. De Jonghe C, Esselens C, Kumar-Singh S, Craessaerts K, Serneels S, Checler F et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet 2001; 10: 1665–1671.

    CAS  PubMed  Google Scholar 

  119. Guardia-Laguarta C, Pera M, Clarimon J, Molinuevo JL, Sanchez-Valle R, Llado A et al. Clinical, neuropathologic, and biochemical profile of the amyloid precursor protein I716F mutation. J Neuropathol Exp Neurol 2010; 69: 53–59.

    CAS  PubMed  Google Scholar 

  120. Herl L, Thomas AV, Lill CM, Banks M, Deng A, Jones PB et al. Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase. Mol Cell Neurosci 2009; 41: 166–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kwok JB, Li QX, Hallupp M, Whyte S, Ames D, Beyreuther K et al. Novel Leu723Pro amyloid precursor protein mutation increases amyloid beta42(43) peptide levels and induces apoptosis. Ann Neurol 2000; 47: 249–253.

    CAS  PubMed  Google Scholar 

  122. Lee NC, Yang SY, Chieh JJ, Huang PT, Chang LM, Chiu YN et al. Blood beta-amyloid and tau in Down syndrome: a comparison with Alzheimer's disease. Front Aging Neurosci 2016; 8: 316.

    PubMed  Google Scholar 

  123. Portelius E, Holtta M, Soininen H, Bjerke M, Zetterberg H, Westerlund A et al. Altered cerebrospinal fluid levels of amyloid beta and amyloid precursor-like protein 1 peptides in Down's syndrome. Neuromolecular Med 2014; 16: 510–516.

    CAS  PubMed  Google Scholar 

  124. Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW . Pathogenic effects of D23N Iowa mutant amyloid beta -protein. J Biol Chem 2001; 276: 32860–32866.

    CAS  PubMed  Google Scholar 

  125. Van Nostrand WE, Melchor JP, Romanov G, Zeigler K, Davis J . Pathogenic effects of cerebral amyloid angiopathy mutations in the amyloid beta-protein precursor. Ann N Y Acad Sci 2002; 977: 258–265.

    CAS  PubMed  Google Scholar 

  126. Giaccone G, Morbin M, Moda F, Botta M, Mazzoleni G, Uggetti A et al. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features. Acta Neuropathol 2010; 120: 803–812.

    CAS  PubMed  Google Scholar 

  127. Woodhouse A, Shepherd CE, Sokolova A, Carroll VL, King AE, Halliday GM et al. Cytoskeletal alterations differentiate presenilin-1 and sporadic Alzheimer's disease. Acta Neuropathol 2009; 117: 19–29.

    CAS  PubMed  Google Scholar 

  128. Ghidoni R, Albertini V, Squitti R, Paterlini A, Bruno A, Bernardini S et al. Novel T719P AbetaPP mutation unbalances the relative proportion of amyloid-beta peptides. J Alzheimers Dis 2009; 18: 295–303.

    CAS  PubMed  Google Scholar 

  129. Bishop GM, Robinson SR . Physiological roles of amyloid-beta and implications for its removal in Alzheimer's disease. Drugs Aging 2004; 21: 621–630.

    CAS  PubMed  Google Scholar 

  130. Ishida A, Furukawa K, Keller JN, Mattson MP . Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 1997; 8: 2133–2137.

    CAS  PubMed  Google Scholar 

  131. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR et al. Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 2008; 31: 250–260.

    CAS  PubMed  Google Scholar 

  132. Furukawa K, Barger SW, Blalock EM, Mattson MP . Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 1996; 379: 74–78.

    CAS  PubMed  Google Scholar 

  133. Stein TD, Johnson JA . Genetic programming by the proteolytic fragments of the amyloid precursor protein: somewhere between confusion and clarity. Rev Neurosci 2003; 14: 317–341.

    CAS  PubMed  Google Scholar 

  134. Kogel D, Deller T, Behl C . Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp Brain Res 2012; 217: 471–479.

    PubMed  Google Scholar 

  135. Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM et al. Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 1996; 67: 1882–1896.

    CAS  PubMed  Google Scholar 

  136. Copanaki E, Chang S, Vlachos A, Tschape JA, Muller UC, Kogel D et al. sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 2010; 44: 386–393.

    CAS  PubMed  Google Scholar 

  137. Almkvist O, Basun H, Wagner SL, Rowe BA, Wahlund LO, Lannfelt L . Cerebrospinal fluid levels of alpha-secretase-cleaved soluble amyloid precursor protein mirror cognition in a Swedish family with Alzheimer disease and a gene mutation. Arch Neurol 1997; 54: 641–644.

    CAS  PubMed  Google Scholar 

  138. Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E . Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci Lett 2000; 278: 169–172.

    CAS  PubMed  Google Scholar 

  139. Dobrowolska JA, Kasten T, Huang Y, Benzinger TL, Sigurdson W, Ovod V et al. Diurnal patterns of soluble amyloid precursor protein metabolites in the human central nervous system. PLoS ONE 2014; 9: e89998.

    PubMed  PubMed Central  Google Scholar 

  140. Wang Q, Rowan MJ, Anwyl R . Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci 2004; 24: 6049–6056.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008; 14: 837–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D . Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009; 62: 788–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Busche MA, Grienberger C, Keskin AD, Song B, Neumann U, Staufenbiel M et al. Decreased amyloid-beta and increased neuronal hyperactivity by immunotherapy in Alzheimer's models. Nat Neurosci 2015; 18: 1725–1727.

    CAS  PubMed  Google Scholar 

  144. Cruts M, Theuns J, Van Broeckhoven C . Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 2012; 33: 1340–1344.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE . Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007; 39: 17–23.

    CAS  PubMed  Google Scholar 

  146. Lan MY, Liu JS, Wu YS, Peng CH, Chang YY . A novel APP mutation (D678H) in a Taiwanese patient exhibiting dementia and cerebral microvasculopathy. J Clin Neurosci 2014; 21: 513–515.

    CAS  PubMed  Google Scholar 

  147. Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL et al. Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011; 89: 1031–1042.

    CAS  PubMed  Google Scholar 

  148. Bugiani O, Giaccone G, Rossi G, Mangieri M, Capobianco R, Morbin M et al. Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch Neurol 2010; 67: 987–995.

    PubMed  Google Scholar 

  149. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1990; 248: 1124–1126.

    CAS  PubMed  Google Scholar 

  150. Van Broeckhoven C, Haan J, Bakker E, Hardy JA, Van Hul W, Wehnert A et al. Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 1990; 248: 1120–1122.

    CAS  PubMed  Google Scholar 

  151. Fernandez-Madrid I, Levy E, Marder K, Frangione B . Codon 618 variant of Alzheimer amyloid gene associated with inherited cerebral hemorrhage. Ann Neurol 1991; 30: 730–733.

    CAS  PubMed  Google Scholar 

  152. Rozemuller AJ, Roos RA, Bots GT, Kamphorst W, Eikelenboom P, Van Nostrand WE . Distribution of beta/A4 protein and amyloid precursor protein in hereditary cerebral hemorrhage with amyloidosis-Dutch type and Alzheimer's disease. Am J Pathol 1993; 142: 1449–1457.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yamamoto N, Hasegawa K, Matsuzaki K, Naiki H, Yanagisawa K . Environment- and mutation-dependent aggregation behavior of Alzheimer amyloid beta-protein. J Neurochem 2004; 90: 62–69.

    CAS  PubMed  Google Scholar 

  154. Morelli L, Llovera R, Gonzalez SA, Affranchino JL, Prelli F, Frangione B et al. Differential degradation of amyloid beta genetic variants associated with hereditary dementia or stroke by insulin-degrading enzyme. J Biol Chem 2003; 278: 23221–23226.

    CAS  PubMed  Google Scholar 

  155. Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Naslund J, Axelman K et al. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch Neurol 2008; 65: 499–505.

    PubMed  PubMed Central  Google Scholar 

  156. Kamino K, Orr HT, Payami H, Wijsman EM, Alonso ME, Pulst SM et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet 1992; 51: 998–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Johansson AS, Berglind-Dehlin F, Karlsson G, Edwards K, Gellerfors P, Lannfelt L . Physiochemical characterization of the Alzheimer's disease-related peptides A beta 1-42Arctic and A beta 1-42wt. FEBS J 2006; 273: 2618–2630.

    CAS  PubMed  Google Scholar 

  158. Moro ML, Giaccone G, Lombardi R, Indaco A, Uggetti A, Morbin M et al. APP mutations in the Abeta coding region are associated with abundant cerebral deposition of Abeta38. Acta Neuropathol 2012; 124: 809–821.

    CAS  PubMed  Google Scholar 

  159. Prelli F, Castano E, Glenner GG, Frangione B . Differences between vascular and plaque core amyloid in Alzheimer's disease. J Neurochem 1988; 51: 648–651.

    CAS  PubMed  Google Scholar 

  160. Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K et al. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch Biochem Biophys 1993; 301: 41–52.

    CAS  PubMed  Google Scholar 

  161. Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I et al. Assessment of beta-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 2009; 117: 309–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Thal DR, Ghebremedhin E, Rub U, Yamaguchi H, Del Tredici K, Braak H . Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002; 61: 282–293.

    PubMed  Google Scholar 

  163. Melchor JP, McVoy L, Van Nostrand WE . Charge alterations of E22 enhance the pathogenic properties of the amyloid beta-protein. J Neurochem 2000; 74: 2209–2212.

    CAS  PubMed  Google Scholar 

  164. Weller RO, Massey A, Kuo YM, Roher AE . Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer's disease. Ann N Y Acad Sci 2000; 903: 110–117.

    CAS  PubMed  Google Scholar 

  165. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO . Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol 2008; 18: 253–266.

    CAS  PubMed  Google Scholar 

  166. Ioannidis JP . Why most published research findings are false. PLoS Med 2005; 2: e124.

    PubMed  PubMed Central  Google Scholar 

  167. Begley CG, Ellis LM . Drug development: raise standards for preclinical cancer research. Nature 2012; 483: 531–533.

    CAS  PubMed  Google Scholar 

  168. Tsilidis KK, Panagiotou OA, Sena ES, Aretouli E, Evangelou E, Howells DW et al. Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol 2013; 11: e1001609.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Leek JT, Peng RD . Statistics: P values are just the tip of the iceberg. Nature 2015; 520: 612.

    CAS  PubMed  Google Scholar 

  170. Macri S, Richter SH . The Snark was a Boojum - reloaded. Front Zool 2015; 12: S20.

    PubMed  PubMed Central  Google Scholar 

  171. Raiteri M . Functional pharmacology in human brain. Pharmacol Rev 2006; 58: 162–193.

    CAS  PubMed  Google Scholar 

  172. O'Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S et al. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research. Alzheimers Dement 2015; 11: 549–560.

    PubMed  Google Scholar 

  173. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992; 360: 672–674.

    CAS  PubMed  Google Scholar 

  174. Johnston JA, Cowburn RF, Norgren S, Wiehager B, Venizelos N, Winblad B et al. Increased beta-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer's disease APP670/671 mutation. FEBS Lett 1994; 354: 274–278.

    CAS  PubMed  Google Scholar 

  175. Lin YC, Wang JY, Wang KC, Liao JY, Cheng IH . Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-beta production. J Neurochem 2014; 131: 407–412.

    CAS  PubMed  Google Scholar 

  176. Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H et al. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease. J Neurol Neurosurg Psychiatry 2004; 75: 1039–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lubke U et al. Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric. Am J Pathol 2002; 161: 507–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Kumar-Singh S, Julliams A, Nuydens R, Ceuterick C, Labeur C, Serneels S et al. In vitro studies of Flemish, Dutch, and wild-type beta-amyloid provide evidence for two-staged neurotoxicity. Neurobiol Dis 2002; 11: 330–340.

    CAS  PubMed  Google Scholar 

  179. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet 1992; 1: 218–221.

    CAS  PubMed  Google Scholar 

  180. Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM . Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 2001; 49: 697–705.

    CAS  PubMed  Google Scholar 

  181. Obici L, Demarchi A, de Rosa G, Bellotti V, Marciano S, Donadei S et al. A novel AbetaPP mutation exclusively associated with cerebral amyloid angiopathy. Ann Neurol 2005; 58: 639–644.

    CAS  PubMed  Google Scholar 

  182. Schulte EC, Fukumori A, Mollenhauer B, Hor H, Arzberger T, Perneczky R et al. Rare variants in beta-Amyloid precursor protein (APP) and Parkinson's disease. Eur J Hum Genet 2015; 23: 1328–1333.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Armstrong J, Boada M, Rey MJ, Vidal N, Ferrer I . Familial Alzheimer disease associated with A713T mutation in APP. Neurosci Lett 2004; 370: 241–243.

    CAS  PubMed  Google Scholar 

  184. Bernardi L, Geracitano S, Colao R, Puccio G, Gallo M, Anfossi M et al. AbetaPP A713T mutation in late onset Alzheimer's disease with cerebrovascular lesions. J Alzheimers Dis 2009; 17: 383–389.

    CAS  PubMed  Google Scholar 

  185. Conidi ME, Bernardi L, Puccio G, Smirne N, Muraca MG, Curcio SA et al. Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family. Neurology 2015; 84: 2266–2273.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Rossi G, Giaccone G, Maletta R, Morbin M, Capobianco R, Mangieri M et al. A family with Alzheimer disease and strokes associated with A713T mutation of the APP gene. Neurology 2004; 63: 910–912.

    CAS  PubMed  Google Scholar 

  187. Lindquist SG, Nielsen JE, Stokholm J, Schwartz M, Batbayli M, Ballegaard M et al. Atypical early-onset Alzheimer's disease caused by the Iranian APP mutation. J Neurol Sci 2008; 268: 124–130.

    CAS  PubMed  Google Scholar 

  188. Pasalar P, Najmabadi H, Noorian AR, Moghimi B, Jannati A, Soltanzadeh A et al. An Iranian family with Alzheimer's disease caused by a novel APP mutation (Thr714Ala). Neurology 2002; 58: 1574–1575.

    CAS  PubMed  Google Scholar 

  189. Edwards-Lee T, Ringman JM, Chung J, Werner J, Morgan A St, George Hyslop P et al. An African American family with early-onset Alzheimer disease and an APP (T714I) mutation. Neurology 2005; 64: 377–379.

    CAS  PubMed  Google Scholar 

  190. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999; 65: 664–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Park HK, Na DL, Lee JH, Kim JW, Ki CS . Identification of PSEN1 and APP gene mutations in Korean patients with early-onset Alzheimer's disease. J Korean Med Sci 2008; 23: 213–217.

    PubMed  PubMed Central  Google Scholar 

  192. Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ et al. Early onset familial Alzheimer's disease: mutation frequency in 31 families. Neurology 2003; 60: 235–239.

    CAS  PubMed  Google Scholar 

  193. Cruts M, Dermaut B, Rademakers R, Van den Broeck M, Stogbauer F, Van Broeckhoven C . Novel APP mutation V715A associated with presenile Alzheimer's disease in a German family. J Neurol 2003; 250: 1374–1375.

    PubMed  Google Scholar 

  194. Sieczkowski E, Milenkovic I, Venkataramani V, Giera R, Strobel T, Hoftberger R et al. I716F AbetaPP mutation associates with the deposition of oligomeric pyroglutamate amyloid-beta and alpha-synucleinopathy with Lewy bodies. J Alzheimers Dis 2015; 44: 103–114.

    CAS  PubMed  Google Scholar 

  195. Guerreiro RJ, Baquero M, Blesa R, Boada M, Bras JM, Bullido MJ et al. Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiol Aging 2010; 31: 725–731.

    CAS  PubMed  Google Scholar 

  196. Forloni G, Terreni L, Bertani I, Fogliarino S, Invernizzi R, Assini A et al. Protein misfolding in Alzheimer's and Parkinson's disease: genetics and molecular mechanisms. Neurobiol Aging 2002; 23: 957–976.

    CAS  PubMed  Google Scholar 

  197. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LN et al. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 2014; 23: 3523–3536.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 1991; 353: 844–846.

    CAS  PubMed  Google Scholar 

  199. Knight WD, Ahsan RL, Jackson J, Cipolotti L, Warrington EK, Fox NC et al. Pure progressive amnesia and the APPV717G mutation. Alzheimer Dis Assoc Disord 2009; 23: 410–414.

    PubMed  Google Scholar 

  200. Dobricic V, Stefanova E, Jankovic M, Gurunlian N, Novakovic I, Hardy J et al. Genetic testing in familial and young-onset Alzheimer's disease: mutation spectrum in a Serbian cohort. Neurobiol Aging 2012; 33: 1481 e7–12.

    Google Scholar 

  201. Theuns J, Marjaux E, Vandenbulcke M, Van Laere K, Kumar-Singh S, Bormans G et al. Alzheimer dementia caused by a novel mutation located in the APP C-terminal intracytosolic fragment. Hum Mutat 2006; 27: 888–896.

    CAS  PubMed  Google Scholar 

  202. Lanoiselee HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S et al. APP PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 2017; 14: e1002270.

    PubMed  PubMed Central  Google Scholar 

  203. Rovelet-Lecrux A, Charbonnier C, Wallon D, Nicolas G, Seaman MN, Pottier C et al. De novo deleterious genetic variations target a biological network centered on Abeta peptide in early-onset Alzheimer disease. Mol Psychiatry 2015; 20: 1046–1056.

    CAS  PubMed  Google Scholar 

  204. Cabrejo L, Guyant-Marechal L, Laquerriere A, Vercelletto M, De la Fourniere F, Thomas-Anterion C et al. Phenotype associated with APP duplication in five families. Brain 2006; 129: 2966–2976.

    PubMed  Google Scholar 

  205. Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J et al. APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain 2006; 129: 2977–2983.

    PubMed  Google Scholar 

  206. Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 2012; 78: 1250–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Brouwers N, Sleegers K, Engelborghs S, Bogaerts V, Serneels S, Kamali K et al. Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer's disease. Brain 2006; 129: 2984–2991.

    PubMed  Google Scholar 

  208. Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, Corsmit E et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 2006; 78: 936–946.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Zigman WB . Atypical aging in Down syndrome. Dev Disabil Res Rev 2013; 18: 51–67.

    PubMed  Google Scholar 

  210. Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S . Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 1996; 215: 173–176.

    CAS  PubMed  Google Scholar 

  211. Head E, Lott IT . Down syndrome and beta-amyloid deposition. Curr Opin Neurol 2004; 17: 95–100.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CB and SH are supported by a National Institute of Health Research Senior Investigator award.

Author contributions

SH wrote the paper in consultation and with contributions from CB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hunter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, S., Brayne, C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatry 23, 81–93 (2018). https://doi.org/10.1038/mp.2017.218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.218

This article is cited by

Search

Quick links