Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis

Abstract

Chronic myelogenous leukemia (CML) is a malignant disease characterized by expression of p210-BCR-ABL, the product of the Philadelphia chromosome. Survival of CML patients has been significantly improved with the introduction of tyrosine kinase inhibitors that induce long-term hematologic remissions. However, mounting evidence indicates that the use of a single tyrosine kinase inhibitor does not cure this disease due to the persistence of p210-BCR-ABL at the molecular level or the acquired resistance in the stem cell compartment to individual inhibitors. We have recently shown in a murine model that deficiency of the Rho GTPases Rac1 and Rac2 significantly reduces p210-BCR-ABL-mediated proliferation in vitro and myeloproliferative disease in vivo, suggesting Rac as a potential therapeutic target in p210-BCR-ABL-induced disease. This target has been further validated using a first-generation Rac-specific small molecule inhibitor. In this review we describe the role of Rac GTPases in p210-BCR-ABL-induced leukemogenesis and explore the possibility of combinatorial therapies that include tyrosine kinase inhibitor(s) and Rac GTPase inhibitors in the treatment of CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  Google Scholar 

  2. Michor F, Iwasa Y, Nowak MA . The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. Proc Natl Acad Sci USA 2006; 103: 14931–14934.

    Article  CAS  Google Scholar 

  3. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM . The biology of chronic myeloid leukemia. N Engl J Med 1999; 341: 164–172.

    Article  CAS  Google Scholar 

  4. Goldman JM . Treatment of chronic myeloid leukaemia: some topical questions. Baillieres Clin Haematol 1997; 10: 405–421.

    Article  CAS  Google Scholar 

  5. Fausel C . Targeted chronic myeloid leukemia therapy: seeking a cure. J Manag Care Pharm 2007; 13 (8 Suppl A): 8–12.

    Google Scholar 

  6. Savona M, Talpaz M . Chronic myeloid leukemia: changing the treatment paradigms. Oncology (Williston Park) 2006; 20: 707–711; discussion 712–4, 719, 724.

    Google Scholar 

  7. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  Google Scholar 

  8. Druker BJ, O’Brien SG, Cortes J, Radich J . Chronic myelogenous leukemia. Hematology (Am Soc Hematol Educ Program) 2002; 1: 111–135.

    Article  Google Scholar 

  9. Deininger MW, Goldman JM, Lydon N, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997; 90: 3691–3698.

    CAS  Google Scholar 

  10. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    Article  CAS  Google Scholar 

  11. Lowenberg B . Minimal residual disease in chronic myeloid leukemia. N Engl J Med 2003; 349: 1399–1401.

    Article  Google Scholar 

  12. Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest 2007; 117: 2562–2569.

    Article  CAS  Google Scholar 

  13. Casalou C, Fragoso R, Nunes JF, Dias S . VEGF/PLGF induces leukemia cell migration via P38/ERK1/2 kinase pathway, resulting in Rho GTPases activation and caveolae formation. Leukemia 2007; 21: 1590–1594.

    Article  CAS  Google Scholar 

  14. Sini P, Cannas A, Koleske AJ, Di Fiore PP, Scita G . Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nat Cell Biol 2004; 6: 268–274.

    Article  CAS  Google Scholar 

  15. Renshaw MW, Lea-Chou E, Wang JY . Rac is required for v-Abl tyrosine kinase to activate mitogenesis. Curr Biol 1996; 6: 76–83.

    Article  CAS  Google Scholar 

  16. Skorski T, Wlodarski P, Daheron L, Salomoni P, Nieborowska-Skorska M, Majewski M et al. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP- binding protein Rac. Proc Natl Acad Sci USA 1998; 95: 11858–11862.

    Article  CAS  Google Scholar 

  17. Harnois T, Constantin B, Rioux A, Grenioux E, Kitzis A, Bourmeyster N . Differential interaction and activation of Rho family GTPases by p210bcr-abl and p190bcr-abl. Oncogene 2003; 22: 6445–6454.

    Article  CAS  Google Scholar 

  18. Burridge K, Wennerberg K . Rho and Rac take center stage. Cell 2004; 116: 167–179.

    Article  CAS  Google Scholar 

  19. Schwartz M . Rho signalling at a glance. J Cell Sci 2004; 117 (Part 23): 5457–5458.

    Article  CAS  Google Scholar 

  20. Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ, Perrotti D et al. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 2007; 12: 467–478.

    Article  CAS  Google Scholar 

  21. Blanchard JM . Small GTPases, adhesion, cell cycle control and proliferation. Pathol Biol (Paris) 2000; 48: 318–327.

    CAS  Google Scholar 

  22. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    Article  CAS  Google Scholar 

  23. Turner M, Billadeau DD . VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2002; 2: 476–486.

    Article  CAS  Google Scholar 

  24. Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 2007; 21: 494–504.

    Article  CAS  Google Scholar 

  25. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA . Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11: 886–891.

    Article  CAS  Google Scholar 

  26. Haataja L, Groffen J, Heisterkamp N . Characterization of RAC3, a novel member of the Rho family. J Biol Chem 1997; 272: 20384–20388.

    Article  CAS  Google Scholar 

  27. Cho YJ, Zhang B, Kaartinen V, Haataja L, de Curtis I, Groffen J et al. Generation of rac3 null mutant mice: role of Rac3 in Bcr/Abl-caused lymphoblastic leukemia. Mol Cell Biol 2005; 25: 5777–5785.

    Article  CAS  Google Scholar 

  28. Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG . Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 2000; 97: 185–189.

    Article  CAS  Google Scholar 

  29. Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR et al. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 2005; 24: 7821–7829.

    Article  CAS  Google Scholar 

  30. Zhang X, Ren R . Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  Google Scholar 

  31. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  Google Scholar 

  32. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 13: 764–773.

    Article  CAS  Google Scholar 

  33. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  Google Scholar 

  34. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ . Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994; 269: 22925–22928.

    CAS  Google Scholar 

  35. Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S, Grazia Borrello M et al. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995; 11: 899–907.

    CAS  Google Scholar 

  36. Wertheim JA, Perera SA, Hammer DA, Ren R, Boettiger D, Pear WS . Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood 2003; 102: 2220–2228.

    Article  CAS  Google Scholar 

  37. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    Article  CAS  Google Scholar 

  38. Nishihara H, Maeda M, Oda A, Tsuda M, Sawa H, Nagashima K et al. DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines. Blood 2002; 100: 3968–3974.

    Article  CAS  Google Scholar 

  39. Sattler M, Verma S, Pride YB, Salgia R, Rohrschneider LR, Griffin JD . SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling complex with DOK1 and CRKL. J Biol Chem 2001; 276: 2451–2458.

    Article  CAS  Google Scholar 

  40. Miranda MB, Johnson DE . Signal transduction pathways that contribute to myeloid differentiation. Leukemia 2007; 21: 1363–1377.

    Article  CAS  Google Scholar 

  41. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    Article  CAS  Google Scholar 

  42. Ilaria Jr RL, Van Etten RA . P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    Article  CAS  Google Scholar 

  43. Lin TS, Mahajan S, Frank DA . STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 2000; 19: 2496–2504.

    Article  CAS  Google Scholar 

  44. Hoover RR, Gerlach MJ, Koh EY, Daley GQ . Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene 2001; 20: 5826–5835.

    Article  CAS  Google Scholar 

  45. Spiekermann K, Pau M, Schwab R, Schmieja K, Franzrahe S, Hiddemann W . Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp Hematol 2002; 30: 262–271.

    Article  CAS  Google Scholar 

  46. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: 1229–1242.

    Article  CAS  Google Scholar 

  47. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000; 95: 2118–2125.

    CAS  Google Scholar 

  48. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW et al. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–2155.

    Article  CAS  Google Scholar 

  49. Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 2000; 96: 2277–2283.

    CAS  Google Scholar 

  50. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 2006; 107: 4898–4906.

    Article  CAS  Google Scholar 

  51. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    Article  CAS  Google Scholar 

  52. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001; 98: 5614–5618.

    Article  CAS  Google Scholar 

  53. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  Google Scholar 

  54. Williams DA, Cancelas JA . Leukaemia: niche retreats for stem cells. Nature 2006; 444: 827–828.

    Article  CAS  Google Scholar 

  55. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  Google Scholar 

  56. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  Google Scholar 

  57. Gaiger A, Henn T, Horth E, Geissler K, Mitterbauer G, Maier-Dobersberger T et al. Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 1995; 86: 2371–2378.

    CAS  Google Scholar 

  58. Lin CS, Lim SK, D’Agati V, Costantini F . Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 1996; 10: 154–164.

    Article  CAS  Google Scholar 

  59. Elmaagacli AH, Beelen DW, Opalka B, Seeber S, Schaefer UW . The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage. Ann Hematol 2000; 79: 424–431.

    Article  CAS  Google Scholar 

  60. Guo JQ, Wang JY, Arlinghaus RB . Detection of BCR-ABL proteins in blood cells of benign phase chronic myelogenous leukemia patients. Cancer Res 1991; 51: 3048–3051.

    CAS  Google Scholar 

  61. Schultheis B, Szydlo R, Mahon FX, Apperley JF, Melo JV . Analysis of total phosphotyrosine levels in CD34+ cells from CML patients to predict the response to imatinib mesylate treatment. Blood 2005; 105: 4893–4894.

    Article  CAS  Google Scholar 

  62. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  Google Scholar 

  63. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    Article  CAS  Google Scholar 

  64. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  Google Scholar 

  65. Deininger MW . Optimizing therapy of chronic myeloid leukemia. Exp Hematol 2007; 35 (4 Suppl 1): 144–154.

    Article  CAS  Google Scholar 

  66. Melo JV, Barnes DJ . Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007; 7: 441–453.

    Article  CAS  Google Scholar 

  67. Chu S, Xu H, Shah NP, Snyder DS, Forman SJ, Sawyers CL et al. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005; 105: 2093–2098.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health grant numbers HL69974 and DK62757 (DAW), Leukemia Lymphoma Society grant 6152-06 (DAW), T32 HD046387 (EKT) and the Department of Defense New Investigator Award CM064050 (JAC). DAW and YZ may obtain royalties based on milestones set forth in a licensing agreement between Cincinnati Children’s Hospital Medical Center and Amgen related to the development of drug inhibitors of Rac GTPases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, E., Cancelas, J., Zheng, Y. et al. Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis. Leukemia 22, 898–904 (2008). https://doi.org/10.1038/leu.2008.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.71

Keywords

This article is cited by

Search

Quick links